期刊文献+

基于小波分析的异常样本处理 被引量:6

Anomaly Processing Based on Wavelet Analysis
下载PDF
导出
摘要 数据集中各数据项间匹配关系异常的样本是难以检测的,针对此问题,文章提出了基于小波分析的异常样本检测与修复方法,该方法利用小波分析的多尺度、局部分析等特性,能有效地实现异常数据样本准确检测和修复.为了实现离散序列小波变换的快速计算,还提出了一种基于Newton-Cores公式修正后的数值积分算法.测试结果表明,该方法切实可行、效果良好、有很强的实用性.* It is difficult to detect the anomalies of which the relationship among its attributes is very different from one another in a data set. Aiming at this problem, an approach based on wavelet analysis to detect and amend the anomalous samples is proposed in this paper. Taking full advantage of wavelet analysis characteristics of multiple scale and local analysis, this approach is able to detect and amend anomalous samples accurately. To realize the rapid numerical computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula is also proposed. The test results show that the approach is feasible, with good effect and practicality.
出处 《信息与控制》 CSCD 北大核心 2005年第6期676-679,共4页 Information and Control
基金 国家自然科学基金资助项目(50374079) 国家博士点基金资助项目(20030533008)
关键词 数据预处理 小波分析 异常样本检测 数据挖掘 data preprocessing wavelet analysis anomaly detecting data mining
  • 相关文献

参考文献11

  • 1MehmedK 闪四清.数据挖掘-概念、模型、方法和算法[M].北京:清华大学出版社,2003.. 被引量:4
  • 2Eleazar E. Anomaly detection over noisy data using learned probability distributions [ A]. Proceedings of the 17th International Conference on Machine Learning [ DB/OL]. http://wwwl. cs.columbia. edu/ids/publications/anomaly-icm100. ps .2000. 被引量:1
  • 3Knorr E K, Ng R T. Algorithms for mining clistance-bvaed outliers in large datasets [ A]. Proceedings of the 24th International Conference on Very Large Data Bases [ C ]. USA: Morgan Kaufmann, 1998. 392-403. 被引量:1
  • 4Knorr E K, Ng R T. Finding intentional knowledge of distance-based outliers [A]. Proceedings of the 25th International Conference on Very Large Data Bases [ C ]. USA: Morgan Kaufmann,1999. 211 -222. 被引量:1
  • 5Breunig M M, Kriegel H P, Ng R T, et al. LOF: identifying density-based local oufliers [ A.]. Proceedings of the 20(0 ACM SIG-MOD International Conference on Management of Data [ C ]. New York, NY, USA: ACM Press, 2000. 93-104. 被引量:1
  • 6Breunig M M, Kriegel H P, Ng RT, etal. OPTICS-OF: identifying local outliers [A]. Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases, lecture Notes in Computer Science (LNAI 1704 ) [ C ].Prague: Springer, 1999. 262-270. 被引量:1
  • 7Jiang M F, Tseng S S, Su C M. Two-phase clustering process for oufliers detection [J]. Pattern Recognition Letters, 2001, 22(6 -7) : 691 -700. 被引量:1
  • 8刘洪霖,包宏..化工冶金过程人工智能优化[M],1999.
  • 9Hawkins S, He H X, Williams G, et al. Outlier detection using replication neural networks [ A]. Proceedings of the 4th International Conference and Data Warehousing and Knowledge Discovery[C]. London, UK: Spfinger-Verlag, 2002:170-180. 被引量:1
  • 10杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:166

共引文献171

同被引文献38

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部