期刊文献+

大用户负荷预测管理系统 被引量:5

Load forecasting management system about large consumer
下载PDF
导出
摘要 为了提高地区短期负荷预测水平,掌握地区典型大用户的负荷特点,有必要建立一套系统、全面的地区大用户负荷分析预测管理系统。系统采用成熟的Java2Enterprise Edition(J2EE)多层体系Browser/Server(B/S)结构,以负荷特性分析为基础,精细化的预测流程为核心,考虑与大用户相关的气象要素、生产计划、日类型等因素,形成了大用户"分析、预测、管理"一体化机制。系统给负荷预测部门提供了详细的大用户特性报告。将大用户负荷预测结果融入到地区负荷预测中,提高了地区预测精度。 In order to improve the level of shorl-term regional load forecasting, to master the characteristic of regional representative large consumer, it is necessary to establish a systematic and comprehensive regional representative large consumer load analysis forecasting management system. The system adopts mature Java 2 Enterprise Edition (J2EE) and multi-layer system of Browser/ Server (B/S) structure. It takes load characteristic analysis as a basis and the elaborate load forecasting process as a core. Considering the relative factors, such as meteorological element, production plan, day type and so on, we bring out large consumer integration mechanism of analysis, forecast and management. Finally, it provides a detailed large consumer characteristic report for load torecasting department. The result of large consumer load forecasting will be employed in regional load forecasting, which will greatly improve the accuracy of regional forecasting.
出处 《电力需求侧管理》 2012年第4期7-10,24,共5页 Power Demand Side Management
关键词 典型大用户 短期负荷预测 气象要素 负荷分析报告 系统设计 representative large consumer short- term loadforecasting meteorological element load analysis report systemdesign
  • 相关文献

参考文献7

二级参考文献35

共引文献64

同被引文献37

  • 1李爱波.大用户负荷管理系统的建设及应用[J].广东输电与变电技术,2005(3):32-33. 被引量:3
  • 2康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:497
  • 3王欣星,周晖.基于灰包络负荷预测的日前市场购电策略[J].电网技术,2007,31(16):17-21. 被引量:2
  • 4Tsekouras G J,Kotoulas P B,Tsirekis C D,et al.A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers[J].Electric Power Systems Research,2008,78(9):1494-1510. 被引量:1
  • 5Duan Pan,Xie Kaigui,Guo Tingting,et al.Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques[J].Energies,2011,4(1):173-184. 被引量:1
  • 6Thordarson F O,Madsen H,Nielsen H A,et al.Conditional weighted combination of wind power forecasts[J].Wind Energy,2010,13(8):751-763. 被引量:1
  • 7Germi,M B,Mirjavadi M, Namin A S S,et al.A hybrid model for daily peak load power forecasting based on SAMBA and neural network[J].Journal of Intelligent & Fuzzy Systems,2014,27(2):913-920. 被引量:1
  • 8Taylor J W.Short-term load forecasting with exponentially weighted methods[J].IEEE Transactions on Power Systems,2012,27(1):458-464. 被引量:1
  • 9Borges C E,Penya Y K,Fernandez I.Evaluating combined load forecasting in large power systems and smart grids[J].IEEE Transactions on Industrial Informatics,2013,9(3):1570-1577. 被引量:1
  • 10Yao Lan,Jiang Yulian,Xiao Jian.Short-term power load forecasting by interval type-2 fuzzy logic system[J].Information Computing and Applications,2011,244:575-582. 被引量:1

引证文献5

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部