摘要
以一种新的临界动力学MonteCarlo方法研究了统计模型在临界区域的有限体积标度理论的普适性.通过在三角点阵上模拟Ising模型和3态Potts模型的临界动力学的短时行为,从一阶磁矩的幂指数行为和二阶磁矩、累积量的标度关系中确定了新的动力学临界指数θ和临界指数z,2β/υ.采用Heatbath迭代方法开展了具体模拟计算,所得的结果与正方点阵上相关模型的结果完全一致,从而证实了短时动力学在临界区域中存在的普适性和标度关系.
We have studied the finite size scaling and universality of the spin models on the two dimensional triangle lattice by using the Monte Carlo simulations for the short time critical dynamics.Our investigation shows that the power law behavior of the magnetization,the second magnetic moment and the auto correlation,as well as their finite size scaling relations,can be used to estimate the critical exponents θ,z and β/ν .The results of θ=0 191(2),z=2 153(2) and 2β/ν =0 252(2) for Ising model,and θ =0 076(1), z =2 191(1) and 2β/ν =0 266(2) for Potts model are identical with those for the corresponding models on the square lattice.So the universality proposal in the short time critical dynamics is verified numerically.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2000年第2期344-348,共5页
Acta Physica Sinica