期刊文献+

基于局部性原理的分布式关联规则挖掘算法 被引量:2

Distributed data mining of association rules based on principle of locality
下载PDF
导出
摘要 针对分布式数据挖掘需要节点间进行大量数据交换的缺点,根据张春生,宋琳琳提出的关联规则局部性原理,不进行数据交换,通过节点挖掘,直接得到局部性全局关联规则,通过各节点间规则的合并,直接得到非局部全局关联规则,该算法简单易行,不需要节点间的数据交换,提高了数据挖掘效率,不仅挖掘出其他分布式数据挖掘算法挖掘出的全局关联规则,还能够发现其他算法不能发现的局部全局规则。 In connection with the weak point that distributed data mining needs a great amount of data switching between nodes,according to the principle of locality of association rules proposed by Zhang Chunsheng,Song Linlin,this method doesn’t make any data switching.By means of node mining,the locally global association rules can be directly obtained.Through merging rules of the nodes,the nonlocally global association rules can also be directly obtained.This algorithm is easy,has no needs of data switching between nodes,and the result is close to other ways.
出处 《计算机工程与应用》 CSCD 2012年第21期143-145,190,共4页 Computer Engineering and Applications
基金 内蒙古人才基金资助项目 内蒙古教育科研项目资助(No.NJZY07140)
关键词 局部性 分布式 关联规则 数据挖掘 locality distribute association rule data mining
  • 相关文献

参考文献10

二级参考文献28

共引文献32

同被引文献19

  • 1尚学群,沈均毅.并行关联规则挖掘综述[J].计算机工程,2004,30(14):1-3. 被引量:8
  • 2Thabtah F. A review of associative classification mining [ J ]. The Knowledge Engineering Review, 2007,22( 1 ):37-65. 被引量:1
  • 3Veloso A, Meira W, Zaki M J. Lazy association classifica- tion[ C]/! Proc. of the 6th IEEE International Conference on Data Mining. 2006:645-654. 被引量:1
  • 4Liu Bing, Hsu W, Ma Yiming. Integrating classification and association rule mining[ C]//Proc. of the 4th Interna- tional Conference on Knowledge Discovery and Data Min- ing. 1998:80-86. 被引量:1
  • 5Li Wenmin, Han Jiawei, Pei Jian. CMAR: Accurate and efficient classification based on multiple class-association rules [ C ]//Proc. of IEEE International Conference on Da- ta Mining. 2001:369-376. 被引量:1
  • 6Baralls E, Chuusano S, Garza P. A lazy approach to asso- ciative classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2008,20(2) :156-171. 被引量:1
  • 7Symth P, Goodman R M. An information theoretic approach to rule induction from databases [ J ]. IEEE Transaction on Knowledge and Data Engineering, 1992,4(4) :301-316. 被引量:1
  • 8Chcung D W, Ng V T, Fu A W. Efficient mining of associa- tion rules in distributed database [ J ]. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6) :911-922. 被引量:1
  • 9Friedman J, Kohavi R, ~un Y. Lazy decision trees [ C ]// Proc. of the 13rd National Conference on Art Intelligence. 1996:717-724. 被引量:1
  • 10Wang Ke, Zhou Senqiang, He Yu. Growing decision trees on support-less association rules [ C ]// Proc. of the 6th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining. 2000:265-269. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部