期刊文献+

一种分布式数据库关联规则挖掘算法 被引量:1

Distributed Association Rules Mining Algorithm
下载PDF
导出
摘要 现有的数据挖掘算法多是集中式环境下的数据挖掘处理,但目前的大型数据库多以分布式的形式存在,针对分布式数据挖掘算法FDM及其改进算法中存在的频繁项集丢失问题和网络通信开销过高的问题,提出了一种改进的基于关联规则的分布式数据挖掘算法LTDM,LTDM算法引入了映射标示数组机制,可以在保证频繁项集完整性的同时降低网络的通信开销。实验结果证明了算法的有效性。 Most of the existing data mining algorithms are processing in the centralized systems; however, at present large database is usually distributed. Compared with the frequent itemsets lost and high communication traffic in distributed database conventional and improved algorithm FDM, an improved distributed data mining algorithm LTDM based on association roles is proposed. LTDM algorithm introduces the mapping indicated array mechanism to keep the integrity of frequent itemsets and decrease the communication traffic. The experimental results prove the efficiency of the proposed algorithm.
作者 曹文梁
出处 《计算机系统应用》 2012年第8期218-221,共4页 Computer Systems & Applications
关键词 分布式数据库 数据挖掘 关联规则 频繁项集 网络通信开销 distributed database data mining association rules frequent itemsets communication traffic
  • 相关文献

参考文献7

  • 1Hahsler M, Bettina ~ Homik K, Buchta C. Introduction to arules a computational environment for mining association rules and fxequent item sets,2010. 被引量:1
  • 2Novak PK, Lavra N. Webb GI. Supervised descriptive rule discovery:A unifying survey of contrast set, emerging pattern and subgroup mining.Journal of Machine Learning Research, 2009,10(09):43-48. 被引量:1
  • 3翰明,孙志挥,吉根林.快速挖掘全局频繁项目集.计算机研充与发展,2003,40(4):620-626. 被引量:1
  • 4Agrawal 1L Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases, ACM SIGMOD Conf, Management of Data, 1993. 被引量:1
  • 5王春花,黄厚宽,李红莲.一种快速有效的分布式开采多层关联规则的算法[J].计算机研究与发展,2001,38(4):438-443. 被引量:6
  • 6Cheung DW, Han J, Ng V, Fu AWC, Fu Y. A Fast Distributed Algorithm for Mining Association Rules.Proc.1996 Int'l Conf. Parallel and Distributed Information Systems (PDIS ' 96). 1996.31-42. 被引量:1
  • 7Nijssen S, Guns T, Raedt LD. Correlated itemset mining in roe space:a constraint programming approach. KDD,2009. 647-656. 被引量:1

二级参考文献3

共引文献5

同被引文献9

  • 1AGRAWAL R,IMIELINSKI T,SWAMI A. Mining association rules between sets of items in large databases[A].New York:ACM,1993.207-216. 被引量:1
  • 2HAN J W,PEI J,YIN Y. Mining frequent patterns without candidate generation[A].New York:ACM,2000.1-12. 被引量:1
  • 3TSENGFSC,KUOYH,HUANGYM. Toward boosting distributed association rule mining by data de-clustering[J].{H}Information Sciences,2010,(11):4263-4289. 被引量:1
  • 4CHEN X Y,HE Y S,CHEN P F. HPFP-Miner:A novel parallel frequent itemset mining algorithm[A].Washington,DC:IEEE Computer Scciety,2009.139-143. 被引量:1
  • 5LIU H.Design of frequent pattern mining algorithm LPS-miner and research on parallel formulations(刘慧玲.频繁模式挖掘算法LPS-Miner及其并行模式研究[D].兰州:兰州大学,2009.)频繁模式挖掘算法LPS-Miner及其并行模式研究[D].兰州:兰州大学,2009.)[D].Lanzhou:Lanzhou University,2009. 被引量:1
  • 6CHEUNG D W L,HAN J,NG V T. A fast distributed algorithm for mining association rules[A].Washington,DC:IEEE Computer Society,1996.31-42. 被引量:1
  • 7陈敏,李徽翡.集群系统中的FP-Growth并行算法[J].计算机工程,2009,35(20):71-72. 被引量:8
  • 8何波.基于频繁模式树的分布式关联规则挖掘算法[J].控制与决策,2012,27(4):618-622. 被引量:11
  • 9徐杰,李云,刘博,张晓斌.基于垂直FP树的并行频繁项集挖掘[J].计算机与数字工程,2012,40(10):12-15. 被引量:3

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部