期刊文献+

基于果蝇优化算法的LSSVR干燥速率建模 被引量:26

Drying Rate Modeling Based on FOALSSVR
下载PDF
导出
摘要 回转干燥窑由于干燥速率难以在线测量,其干燥速率模型的建立一直是一大难题。在分析干燥速率建模的基础上,提出将最小二乘支持向量机运用到干燥速率建模,及其基于免疫-果蝇优化算法的最小二乘支持向量机回归参数优化方法(IAFOALSSVR)。首先利用预处理的干燥过程数据进行模型的训练,利用免疫-果蝇算法对模型参数进行寻优,然后获得最优参数并建立最优模型,通过使用该改进方法建立干燥速率模型与其他算法优化的模型进行对比,结果表明该优化方式在干燥速率建模精度上与其它智能算法相当,在计算效率上要优于其它算法。 It is difficult to obtain the model of drying rate because the reliable online measurement for the drying rate is hardly available. Based on analysis of the drying process of rotary dryer kiln, the least squares support vector machine applied to the drying rate modeling and the least squares support vector machine regression parameters optimization based on IA-FOA(lAFOALSSVR) are presented. Pretreatment drying process data are used for training the model and IA - F0A algorithm is used to optimize the model parameters, so that the optimal parameters are obtained and the optimal model is established. The improved model is compared with other models optimized by other algorithms. Simulation results show that the accuracy is the same with other algorithms on the drying rate modeling but computational efficiency is much better than others.
出处 《控制工程》 CSCD 北大核心 2012年第4期630-633,638,共5页 Control Engineering of China
基金 国家自然科学基金资助(21106036 61074067) 湖南省教育厅优秀青年项目资助(11B038)。
关键词 最小二乘支持向量机回归 干燥速率建模 免疫-果蝇优化算法 参数优化 LSSVR drycing rate modeling IAFOALSSVR parameter optimization
  • 相关文献

参考文献5

二级参考文献24

  • 1邵信光,杨慧中,石晨曦.ε不敏感支持向量回归在化工数据建模中的应用[J].东南大学学报(自然科学版),2004,34(B11):215-218. 被引量:6
  • 2Bates J M,Granger C W J.Combination forecasts[J].Operations Research Quarterly,1969,20 (4):451-468. 被引量:1
  • 3Menezes L M,Bunn D W.Review of guidelines for the use of combined forecasts[J].European Journal of Operational Research,2000,120 (1):190-204. 被引量:1
  • 4Kennedy J,Eberhart R.Particle swarm optimizer[A].In:Proceedings of IEEE International Conference on Neural Networks[C].NJ:Piscataway,1995:1942-1948. 被引量:1
  • 5Fukuyama Y.Fundamentals of particle swarm techniques[A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques with Applications to Power Systems[C].IEEE Power Engineering Society,2002:45-51. 被引量:1
  • 6Van den Bergh F.Analysis of particle swarm optimizers[D].South Africa:Department of Computer Science,University of Pretoria,2002. 被引量:1
  • 7De Castro L N,Timmis J I.Artificial immune systems:a new computational intelligence approach[M].London:Springer,2002. 被引量:1
  • 8Gang Lu,De-jian Tan.Improvement on regulating definiti on of antibody density of immune algorithm[A].In:Proceedings of the 9 th International Conference on Neural Information Processing (ICONIP' 02)[C].Singapore,2002,5:2669-2672. 被引量:1
  • 9Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[A].In:Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999)[C].Washington DC,1999.1951-1957. 被引量:1
  • 10VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer-Veriag,1995. 被引量:1

共引文献149

同被引文献207

引证文献26

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部