期刊文献+

正交小波变换支持向量数据描述在轴承性能评估中的应用 被引量:2

Applying Orthogonal Wavelet Transform-SVDD to Evaluating Performance of Bearing
下载PDF
导出
摘要 支持向量数据描述是一种单值分类方法,该方法能够在缺少故障样本的情况下,仅仅利用采集到的正常状态数据样本建立起单值分类器,从而区分出机器的运行状态。正交小波变换对提取非平稳信号的冲击成分具有良好的性能。提出了一种基于正交小波变换和支持向量数据描述的状态评估方法,利用正交小波变换方法提取各细节信号的峰峰值作为分类器的输入参数,用支持向量数据描述方法建立起分类模型对机器运行状态进行定量评估。对滚动轴承内圈不同程度的点蚀故障进行了试验分析,建立起了对滚动轴承性能退化程度评估的定量指标。 The support vector data description (SVDD) is a kind of single-value classification method, by which a single-value classifier can be built by using its normal state data samples even if the fault samples are lacking, thus revealing its normal operation. The orthogonal wavelet transform (OWT) has good performance for extracting the shock elements of a non-stable signal. We propose a new state evaluation method that uses the SVDD and the OWT and use the OWT to extract the peak-peak values of various detail signals, which are in turn used as input parame- ters of the classifier. We build the classification model of the classifier with the SVDD method to carry out the quan- titive evaluation of the state of the machine. We also use our method to do experimental analysis of the pitting faults on the inner ring of a rolling bearing and establish the quantitive indicators for evaluating its worsening perform- ance; the experimental results show that our method is effective.
出处 《机械科学与技术》 CSCD 北大核心 2012年第7期1201-1204,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50675209) 河南省自然科学基金项目(0611022400) 河南省杰出人才创新基金项目(0621000500)资助
关键词 支持向量数据描述 故障诊断 性能评估 正交小波变换 support vector data description(SVDD) fault diagnosis performance evaluation orthogonalwavelet transform
  • 相关文献

参考文献6

二级参考文献17

  • 1王奉涛,马孝江,邹岩崑,张志新.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180. 被引量:43
  • 2范海宁,郭英,吴剑锋,陈志武.基于小波包分解的声信号特征提取方法[J].现代电子技术,2005,28(4):20-21. 被引量:11
  • 3李凌均,韩捷,郝伟,董辛,何正嘉.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429. 被引量:22
  • 4Jay Lee. Measurement of machine performance degradation using a neural network model [ J ]. Computers in Industry, 1996,30 : 193 - 209. 被引量:1
  • 5Huang Runqing, Xi Lifeng, Li Xinglin, et al. Residual llfe predictions for ball bearings based on self - organizing map and back propagation neural network methods [ J ]. Mechanical Systems and Signal Processing, 2007,21:193 -207. 被引量:1
  • 6Yan J H, Lee J. Degradation assessment and fault modes classification using logistic regression [ J ]. Journal of Manufacturing Science and Engineering - Transactions of the Asme, 2005,127:912 - 914. 被引量:1
  • 7Hasan Ocak, Kenneth A L, Fred M. Discenzo. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling A method for bearing prognostics [ J ]. Journal of Sound and Vibration,2007,302 : 951 - 961. 被引量:1
  • 8David M J T, Robert P W. Duin. Support vector domain description [ J ]. Pattern Recognition Letters, 1999, 20:1191 - 1199. 被引量:1
  • 9http ://www - ict. ewi. tudelft. nl/- davidt/dd_tools. htmlt. 被引量:1
  • 10Sunnersjo C S. Rolling Bearing Vibrations-the Effects of Geometrical Imperfections and Wears [ J ]. Journal of Sound and Vibration, 1985,98 (4) ,455 - 474. 被引量:1

共引文献60

同被引文献26

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部