期刊文献+

基于BP神经网络的电力系统短期负荷预测 被引量:6

Short-term Load Forecasting of Power System Based on BP Neural Network
下载PDF
导出
摘要 电力系统短期负荷预测的准确性对电力系统的实时运行调度至关重要.采用BP神经网络对电力系统负荷短期预测研究,根据影响电力系统的负荷因素如温度、天气等确定模型构成,同时利用遗传算法对BP神经网络进行优化.实例表明,利用遗传算法优化的BP神经网络在电力系统短期负荷预测中是有效的. The accuracy of short-tenn electric load forecasting is very important for real-time operation in the power system. BP neural network was used to study short-term electric load in this paper. Structure of the model was detemained according to the power system load factors of temperature and weather. Genetic algorithm was used to optimize the BP neural network. The examples show that genetic algorithm optimized by BP neural network is effective in the short-term load forecasting of power system.
作者 熊永胜
出处 《成都大学学报(自然科学版)》 2012年第2期167-169,共3页 Journal of Chengdu University(Natural Science Edition)
关键词 负荷预测 神经网络 遗传算法 load forecasting neural network genetic algorithm
  • 相关文献

参考文献5

二级参考文献24

共引文献69

同被引文献48

引证文献6

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部