摘要
To deal with the thermal protection of high speed vehicle, the cooling efficiency of a combinatorial thermal protection configuration which is composed of the forward-facing cavity and opposing jet is investigated. The numerical simulation result is validated by experiment and the flow field parameters, aerodynamic force and heat flux distribution are obtained. The detailed numerical simulation results show that this kind of combinatorial thermal protection configuration has an excellent effect on cooling the surface of the nosetip. By adding of the opposing jet with a small total pressure, it can avoid the disadvantage to the control performance of the aircraft which is caused by the cavity oscillating flow. And the low stagnation pressure is propitious to simplify the opposing jet system. The location of the recirculation region has a significant impact of the aerodynamic heating. The heat flux along outer body surface of the nosetip does not increase with the stagnation pressure of opposing jet decreases monotonically.
基金
supported by the Major Program of National Natural Science Foundation of China (Grant No.90916018)
the Research Fund for the Doctoral Program of Higher Education of China (Grant No.2008 99980006)