期刊文献+

Thermal Protection Efficiency of Forward-facing Cavity and Opposing Jet Combinational Configuration 被引量:3

Thermal Protection Efficiency of Forward-facing Cavity and Opposing Jet Combinational Configuration
原文传递
导出
摘要 To deal with the thermal protection of high speed vehicle, the cooling efficiency of a combinatorial thermal protection configuration which is composed of the forward-facing cavity and opposing jet is investigated. The numerical simulation result is validated by experiment and the flow field parameters, aerodynamic force and heat flux distribution are obtained. The detailed numerical simulation results show that this kind of combinatorial thermal protection configuration has an excellent effect on cooling the surface of the nosetip. By adding of the opposing jet with a small total pressure, it can avoid the disadvantage to the control performance of the aircraft which is caused by the cavity oscillating flow. And the low stagnation pressure is propitious to simplify the opposing jet system. The location of the recirculation region has a significant impact of the aerodynamic heating. The heat flux along outer body surface of the nosetip does not increase with the stagnation pressure of opposing jet decreases monotonically.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第4期342-347,共6页 热科学学报(英文版)
基金 supported by the Major Program of National Natural Science Foundation of China (Grant No.90916018) the Research Fund for the Doctoral Program of Higher Education of China (Grant No.2008 99980006)
关键词 Thermal protection Forward-facing cavity Opposing jet Nose-tip Aerodynamic heating 喷射系统 组合配置 防护效率 保护配置 冷却效率 数值模拟 总压力 高速车辆
  • 相关文献

参考文献2

二级参考文献16

共引文献16

同被引文献22

  • 1刘伟强,聂涛,孙健,等.一种层板式发汗和逆喷组合冷却鼻锥:ZL201310112295.7[P],2015-04-15. 被引量:1
  • 2Bisek N J. Numerical study of plasma-assisted aerodynamic control for hypersonic vehicles [ D ]. USA : The University of Michigan, 2010. 被引量:1
  • 3Gurjanov E P, Harsha P T. AJAX: new directions inhypersonic technology[ C ]//Proceedings of 27th Plasmadynamics and Lasers Conference, AIAA 1996-4609, 1996. 被引量:1
  • 4Bityurin V A, Bocharov A N. On efficiency of heat flux mitigation by the magnetic field in MHD re-entry flow[ C]/! Proceedings of 42nd AIAA Plasmadynamics and Lasers Conference, AIAA 2011 - 3463, 2011. 被引量:1
  • 5Bityurin V A, Bocharov A N. Study of catalytic effects at reentry vehicle [ C ]//Proceedings of 52nd Aerospace Sciences Meeting, AIAA 2014 - 1033, 2014. 被引量:1
  • 6Bisek N J, Gosse R, Poggie J. Computational study of impregnated ablator for improved magnetohydrodynamic heat shield [ J]. Journal of Spacecraft Rockets, 2013, 50 (5) : 927 - 935. 被引量:1
  • 7Fujino T, Matsumoto Y, Kasahara J, et al. Numerical studies of magnetohydrodynamic flow control considering real wall electrical conductivity[J]. Journal of Spacecraft and Rockets,2007, 44(3): 625-632. 被引量:1
  • 8Cristofolini A, Borghi C A, Neretti G, et al. MHD interaction around a blunt body in a hypersonic unseeded air flow [ C ]// Proceedings of 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2012 - 5804, 2012. 被引量:1
  • 9Gulhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electro-magnetic fields in partially ionized argon flows[- J]. Journal of Space and Rockets, 2009, 46 (2) : 274 - 283. 被引量:1
  • 10Raizer Y P. Gas discharge physics [ M ]. USA : Springer- Verlag, 1991. 被引量:1

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部