期刊文献+

基于分组数据处理神经网络气动人工肌肉迟滞特性 被引量:7

Study on Hysteresis of Pneumatic Artificial Muscle Based on Group Method of Data Handling Neural Network
下载PDF
导出
摘要 气动人工肌肉的动态特性中存在着非常复杂的迟滞现象.目前对其迟滞特性的研究很不充分,甚至对其输入空间都难以确定.为此,建立了单自由度气动人工肌肉实验平台,利用分组数据处理神经网络独特的自组织特性,运用数据挖掘技术探索气动人工肌肉迟滞特性的输入空间.将自适应模糊小脑模型神经网络引入滑模控制,基于已确定的输入空间,在每个采样周期逼近迟滞力不断变化的动态值,在线实时补偿迟滞力的影响.实验结果验证了输入空间选取的合理性和有效性. There exits hysteresis phenomenon in the dynamics of pneumatic artificial muscle(PAM). By now the study on the hysteresis of PAM is so insufficient that even its input space is unknown. So, a sin gle degree of freedom PAM experiment facility was established. And the input space for the hysteresis of PAM was explored via a data mining technique group method of data handling(GMDH) neural network with the character of self organization. Based on the input space, an adaptive fuzzy cerebellar model articu- lation controller(CMAC) neural network was introduced into sliding mode control and the hysteresis of PAM was on-line compensated in real time. The experimental results suggest the rationality and effective- ness of the input space for the hysteresis of PAM.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第6期931-935,共5页 Journal of Shanghai Jiaotong University
基金 上海市高校培养优秀青年教师科研专项基金(thc1005)
关键词 分组数据处理神经网络 气动人工肌肉 迟滞力 输入空间 group method of data handling (GMDH) neural network pneumatic artificial muscle cerebel lar model articulation controller (PAM) hysteresis input space
  • 相关文献

参考文献12

  • 1Shen W, Shi G L. An enhanced static mathematic model of braided fiber reinforced pneumatic artificial muscle[J]. I Mech E. Part I: Journal of Systems and Control Engineering, 2011, 225(2): 212 225. 被引量:1
  • 2Minh T V, Tjahjowidodo T, Ramon M, et al. Cas- cade position control of a single pneumatic artificial muscle mass system with hysteresis compensation [J]. Mechatronics, 2010, 20(3): 402-404. 被引量:1
  • 3杨钢,李宝仁.基于CMAC的气动人工肌肉变结构位置控制研究[J].机械工程学报,2004,40(10):92-96. 被引量:9
  • 4Huang S N, Tan K K, Lee T H. Stable decentralized adaptive control design of robot manipulators using neural network approximations[J]. Advanced Robot- ics, 2003, 17(4): 369-383. 被引量:1
  • 5沈伟,施光林.基于气动人工肌肉的混合位置跟踪控制[J].上海交通大学学报,2012,46(2):201-206. 被引量:3
  • 6Ivakhnenko A G. Polynomial theory oi" complex sys- tem[J]. IEEE Transactions on Systems, Man, and Cy- bernetics, 1971, 1(4): 364 378. 被引量:1
  • 7Ivakhnenko A G. Sorting methods in self roganization of models and clusterizations (review of new basic ideas) iterative (multi-row) polynomial GMDH algo- rithms[J]. Soviet Journal of Automation and Informa- tion Sciences, 1989, 22(4): 88-91. 被引量:1
  • 8徐田军,王桂增.GMDH中部分表达式的构成及改进方法[J].自动化学报,1994,20(4):470-475. 被引量:8
  • 9Chou C P, Hannaford B. Measurement and modeling of Mckibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102. 被引量:1
  • 10Tondu B, Lopez P. Modeling and control of Mck- ibben artificial muscle robot actuators[J]. IEEE Con- trol Systems Magazine, 2000, 20(2): 15-38. 被引量:1

二级参考文献19

  • 1杨钢,李宝仁.基于CMAC的气动人工肌肉变结构位置控制研究[J].机械工程学报,2004,40(10):92-96. 被引量:9
  • 2杨钢,李宝仁.气动人工肌肉位置控制策略[J].华中科技大学学报(自然科学版),2006,34(8):71-73. 被引量:4
  • 3Festo Co.Festo Pneumatic[M].V28.Esslingen,Germany:Festo KG,2000. 被引量:1
  • 4Shen W,Shi G L.Enhanced static mathematic modelof braided fiber reinforced pneumatic artificial muscle[J].Journal of Systems and Control Engineering,2011,225(2):212-225. 被引量:1
  • 5Albus J S.A new approach to manipulator control:The cerebellar model articulation controller(CMAC)[J].Journal of Dynamic Systems,Measurement andControl,1975,97(7):220-227. 被引量:1
  • 6Chiang C T,Lin C S.CMAC with general basisfunctions[J].Neural Networks,1996,9(7):1199-1211. 被引量:1
  • 7徐田军,过程模型化与控制.6,1993年 被引量:1
  • 8钟登华,系统工程,1992年,10卷,42页 被引量:1
  • 9杨自厚,自动化学报,1986年,12卷,397页 被引量:1
  • 10Caldwell D G,Medrano-Cerda G A,Goodwin M. Control of pneumatic muscle actuator. IEEE Control Systems Magazine,1995, 15(1):40~48 被引量:1

共引文献17

同被引文献63

引证文献7

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部