期刊文献+

基于关联规则挖掘的蛋白质相互作用的预测

Prediction of Protein-Protein Interactions Based on Association Rule Mining
下载PDF
导出
摘要 利用蛋白质的一级结构信息,采用三肽频数方法刻画蛋白质序列,将关联规则(association rule,AR)挖掘应用于蛋白质相互作用(protein-protein interactions,PPIs)的预测.计算结果表明,提出的方法在半胱氨酸不同分类的情况下都能够准确地预测蛋白质相互作用.最后,比较半胱氨酸的不同分类对预测结果的影响. Association rule interactions (PPIs) through (AR) protein mining has been successfully applied to predict protein-protein 's primary sequence. A conjoint triad feature is used to describe amino acids. Experimental results show that the proposed method can predict PPIs with high accuracy under different classifications of Cys. The predicted results of two classifications of Cys are compared.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期265-270,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(30871341) 上海市重点学科建设资助项目(S30104) 上海市教委重点学科建设资助项目(J50101)
关键词 关联规则挖掘 蛋白质相互作用 序列编码 氨基酸分类 association rule mining protein-protein interactions (PPIs) sequential coding classification of amino acids
  • 相关文献

参考文献14

  • 1MCDOWALL M D,SCOTT M S,BARTON G L. Human protein-protein interactions prediction database[J].Nucleic Acids Research,2009,(1):651-656.doi:10.1093/nar/gkn870. 被引量:1
  • 2HAN J W,KAMBER M. Data mining concepts and techniques[M].San Francosco:Morgan Kaufmann,2006.1-40. 被引量:1
  • 3JANSEN R,YU H,GREENBAUM D. A Bayesian networks approach for predicting protein-protein interactions from genomic data[J].Science,2003,(5644):449-453. 被引量:1
  • 4WANG J,LI C H,WANG E K. Uncovering the rules for protein-protein interactions from yeast genomic data[J].Proceedings of the National Academy of Sciences(USA),2009.3752-3757. 被引量:1
  • 5SOONG T T,WRZESZCZYNSKI K O,ROST B. Physical protein-protein interactions predicted from microarrays[J].Bioinformatics,2008,(22):2608-2614.doi:10.1093/bioinformatics/btn498. 被引量:1
  • 6FAWCETT T. An introduction to ROC analysis[J].Pattern Recognition Letters,2006.861-874. 被引量:1
  • 7王翼飞;史定华.生物信息学--智能化算法及其应用[M]北京:化学工业出版社,200611-18. 被引量:1
  • 8冯铁男,江浩,王翼飞.基于信噪比的蛋白质相互作用的预测[J].上海大学学报(自然科学版),2008,14(6):604-610. 被引量:4
  • 9秦殿刚,高松,冯铁男,马成荣,王翼飞.通过序列编码预测蛋白质相互作用[J].应用科学学报,2009,27(6):601-605. 被引量:1
  • 10GIONIS A,MANNILS H,MIELIKAINEN T. Asscssing data mining results via swap randomization[A].2006.167-176. 被引量:1

二级参考文献22

  • 1刘翔,王翼飞.应用改进的共鸣识别模型预测蛋白质相互作用[J].上海大学学报(自然科学版),2006,12(1):69-73. 被引量:4
  • 2COSIC I. The resonant recognition model of macromolecular bioactivity : theory and application [ M ]. Basel : Birkhauser Verlag, 1997 : 1-26. 被引量:1
  • 3NIKOLA S, PASKO K, BISERKA P, et al. Resonant recognition model defines the secondary structure of bjoactive proteins [ J]. Croatica Chemica Acta, 2002, 75(4) : 899-908. 被引量:1
  • 4COSIC I, FANG Q. Prediction of protein active site using digital signal processing methods [C]// The 2nd International Conference on Bioelectromagnetism, Melbourne, Australia. 1998:69-70. 被引量:1
  • 5PIROGOVA E, COSIC I. Development of new computational amino acid parameters for protein structure or function analysis within the resonant recognition model [C]// The 23rd IEEE EMBS Annual International Conference. 2001:2890-2893. 被引量:1
  • 6飞思科技产品研发中心.MATLAB6.5辅助小波分析和应用[M].北京:电子工业出版社,2003:151-184. 被引量:3
  • 7冉启文,潭立英.小波分析与傅里叶变换及应用[M].北京:电子工业出版社,2003:151-184. 被引量:1
  • 8COSIC I, FANG Q. Evaluation of different wavelet constructions (designs) for analysis of protein sequences [C]// 2002 14th International Conference on Digital Signal Processing. 2002 : 1117-1120. 被引量:1
  • 9CHAFIA T, FANG Q, COSIC I. Protein sequence comparison based on the wavelet transforms approach [J]. Protein Engineering, 2002, 15(3) :193-203. 被引量:1
  • 10JANSEN R, Yu H, GREENBAUM D, KLUGER Y, KROGAN N J, CHUNG S, EMILI A, SNYDER M, GREENBLATT J F, GERSTEIN M. A Bayesian networks approach for predicting protein-protein interactions from genomic data[J]. Science, 2003, 302(5644): 449-453. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部