期刊文献+

基于粒子对和差分进化的基因表达数据聚类 被引量:1

Gene expression data clustering based on particle pair and differential evolution
下载PDF
导出
摘要 针对粒子对算法存在过早陷入局部最优导致聚类精度不高以及聚类结果对初始粒子比较敏感等问题,提出了一种新的基于粒子对(PPO)与差分进化(DE)混合算法。该混合算法结合PPO和DE的优点,根据一定的迭代次数在精英粒子对迭代过程中引入DE算法,借助DE算法的全局收敛能力避免PPO算法过早陷入局部最优的缺点,并借助K-means快速聚类的结果和PSO聚类结果初始化粒子位置,提高初始粒子的质量从而提高聚类结果精度。将混合算法应用于真实的基因表达数据,实验结果表明,混合算法比K-means和PPO算法具有更好的聚类结果和稳定性。 In order to solve the problem that particle pair algorithm existed local optimization premature to lower precision and the clustering results were sensitive to initial particle,this paper put forward a new hybrid algorithm based on particle pair optimization(PPO) and differential evolution(DE).The hybrid algorithm combined the advantages of PPO and DE,and assigned the fast cluster rusult of the K-means and PSO to initialize particle position to improve the quality of the initial particles and improve accuracy of clustering results.It applied the hybrid algorithm to gene expression data.The experiment results indicate that the hybird algorithm obtains better clustering precision and stability than the K-means algorithm and particle pair algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2012年第7期2484-2487,共4页 Application Research of Computers
基金 广西研究生教育创新计划资助项目(2011106020812M57)
关键词 基因聚类 K-MEANS算法 粒子对 差分进化 混合算法 gene clustering K-means algorithm particle pair differential evolution hybrid algorithm
  • 相关文献

参考文献15

  • 1钟杨;张文娟;王莉.基因计算[M]上海:上海教育出版社,2005. 被引量:1
  • 2孙啸;陆祖宏;谢建明.生物信息学基础[M]北京:清华大学出版社,2005. 被引量:1
  • 3李瑶.基因芯片技术--解码生物[M]北京:科学出版社,2004. 被引量:1
  • 4MacQUEEN J B. Some methods for classification and analysis of multivariate observations[A].Berkeley:University of Caifornia Press,1967.281-297. 被引量:1
  • 5MICHAEL B,EISEN M B,PAUL T. Cluster analysis and display of genome-wide expression patterns[J].Proceedings of the National Academy of Sciences(USA),1998,(25):14863-14868. 被引量:1
  • 6OHONENT. The self-organizing maps[J].Proceedings of the IEEE,1990,(09):1464-1480.doi:10.1109/5.58325. 被引量:1
  • 7DU Zhi-hua,WANG Yi-wei,JI Zhen. PK-means:a new algorithm for gene clustering[J].Computational Biology and Chemistry,2008,(04):243-247.doi:10.1016/j.compbiolchem.2008.03.020. 被引量:1
  • 8STORN R,PRICE K. Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,(04):341-359. 被引量:1
  • 9STORN R,PRICE K. Differential evolution for multi-objective optimization[J].Evolutionary Computation,2003,(04):8-12. 被引量:1
  • 10张国印,程慧杰,刘咏梅,姚爱红.一种新算法在基因表达谱聚类中的应用[J].计算机工程与应用,2009,45(36):216-218. 被引量:4

二级参考文献30

  • 1李霞,罗雪晖,张基宏.基于人工蚁群优化的矢量量化码书设计算法[J].电子学报,2004,32(7):1082-1085. 被引量:16
  • 2高尚,杨静宇.一种新的基于粒子群算法的聚类方法[J].南京航空航天大学学报,2006,38(B07):62-65. 被引量:12
  • 3Xu Y,Olman V,Xu D.Clustering gene expression data using a graph-theoretic approach:An application of minimum spanning trees[J].Bioinformatics, 2002,18 (4) : 536-545. 被引量:1
  • 4Du Z H,Wang Y W,Ji Z.PK-means:A new algorithm for gene clustering[J].Computational Biology and Chemistry,2008,32(4). 被引量:1
  • 5Liang Fa-ming,Wang N.Dynamic agglomerative clustering of gene expression profiles[J].Pattern Recognition Letters,2007,28(9):1062- 1076. 被引量:1
  • 6Chart Z S H.An efficient greedy K-means algorithm for global gene trajectory clustering[J].Expert Systems with Applications,2006, 30(1 ) : 137-141. 被引量:1
  • 7Shen Qi,Shi Wei-min.A combination of modified particle swarm optimizaiton algorithm and support vector machine for gene selection and tumor classification[J].Talanta, 2007,71 : 1679-1683. 被引量:1
  • 8Ciaramella A,Cocozza S.Interactive data analysis and clustering of genomic data[J].Neural Networks,2008,21:368-378. 被引量:1
  • 9Wong Tzu-Tsung,Hsu Ching-Han.Two-stage classification methods for microarray data[J].Expert Systems with Applications,2008, 34: 375-383. 被引量:1
  • 10MacQUEEN J B. Some methods for classification and analysis of mult- ivariate observations [ C ]//Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley : University of Cali- fomia Press, 1967:281 - 297. 被引量:1

共引文献13

同被引文献13

  • 1GULOB T R, SLONIM D K, TAMAYO P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring [ J ]. Science, 1999, 286 (5439) : 531 - 537. 被引量:1
  • 2KANCHERLA K, MUKKAMALA S. Feature selection for lung cancer detection using SVM based recursive feature elimination method[J]. Machine Learning and Data Mining in Bioinformatics, 2012, 7246:168 -176. 被引量:1
  • 3TARI L, BARAL C, KIM S. Fuzzy c - means clustering with prior biological knowledge[ J ]. Journal of Biomedical Informatics, 2009, 42(1) :74 -81. 被引量:1
  • 4PATYERSON A D, LI H, EICHLER G S, et al. UPLC - ESI - TOFMS - based metabolomics and gene expression dynamics inspector self- organizing metabolomic maps as tools for understanding the cellular response to ionizing radiation[ J]. American Chemical Society, 2008, 80 (3) :665 - 674. 被引量:1
  • 5MELIA M, SHI Jin -bo. Learning segmentation by random walks [ J ]. In Advances in Neural Information Processing,2000, 10 (2) :873 - 879. 被引量:1
  • 6ZHU Xiao- jin. Semi- Supervised learning with graphs[ D ]. Doctoral dissertation, Carnegie Mellon Univ, CMU -LTI- 05 - 192,2005. 被引量:1
  • 7BAI Xiang, YANG Xing - wei, LATECKI L J, et al. Learning context - sensitive shape similarity by graph transduction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (5) :861 -874. 被引量:1
  • 8ZELNIK- MANOR L, PERONA P. Self-tuning spectral clustering[ J]. Advances in Neural Information Processing Systems, 2004, 17(2) :1601 - 1608. 被引量:1
  • 9GOLUB G H, VAN LOAN C F. Matrix computatio[ M ]. Baltimore :The Johns Hopkins University Press, 1996. 被引量:1
  • 10PILLATI M, VIROLI C. Supervised locally linear embedding for classi cation [ A ]. an application to gene expression data analysis[ C ]. Proceedings of 29th Annual Conference of the German Classi cation Society( GfK1 2005), 2005,15 -18. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部