期刊文献+

基于粒子对和极值优化的基因聚类混合算法研究 被引量:2

Research of gene clustering hybrid algorithm based on particle pair and extremal optimization
下载PDF
导出
摘要 针对粒子对算法存在过早陷入局部最优导致精度不是很高的问题,建议了一种新的基于粒子对(PPO)与极值优化(EO)混合算法。该算法利用PPO和EO的优点,借助K-means快速聚类的结果初始化其中一个粒子,并根据一定迭代次数在精英粒子对的迭代过程中引入EO算法,在保证算法收敛的同时避免后期过早陷入局部最优,从而提高聚类结果的精度。将混合算法应用于真实的基因表达数据。实验结果表明,混合算法比K-means和粒子对算法具有更好的聚类精度和稳定性。 In order to solve the problem that particle pair algorithm exists local optimization premature to lower precision,this paper suggested a new hybrid algorithm based on particle pair optimization(PPO) and extremal optimization(EO).The hybrid algorithm used the merits of PPO and EO,and assigned the fast cluster result of the K-means to initialize a particle and introduced the extremal optimization algorithm in the iteration process of elitist particle pair according to interval iteration,which could ensure convergence and avoid local optimization premature in the later period,so it improved the precision of the clustering result.Applying the hybrid algorithm to gene expression data,the experiment results indicate that the hybrid algorithm obtains better clustering precision and stability than the K-means algorithm and particle pair algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2011年第10期3675-3677,3680,共4页 Application Research of Computers
关键词 基因聚类 K-MEANS算法 粒子对 极值优化算法 混合算法 gene clustering K-means algorithm particle pair extremal optimization algorithm hybrid algorithm
  • 相关文献

参考文献9

  • 1MacQUEEN J B. Some methods for classification and analysis of mult- ivariate observations [ C ]//Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley : University of Cali- fomia Press, 1967:281 - 297. 被引量:1
  • 2EISEN M B, SPELLMAN P T, BROWN P O, et al. Cluster analysis and display of genome-wide expression patterns[ J]. Proceedings of the National Academy of Sciences, 1998,95(25 ) :14863-14868. 被引量:1
  • 3KOHONEN T. The self-organizing maps [ J ]. Proceedings of the IEEE, 1990,78 (9) : 1464-1480. 被引量:1
  • 4DU Zhi-hua,WANG Yi-wei, JI Zhen. PK-means: a new algorithm for gene clustering [ J ]. Computational Biology and Chemistry,2008, 32(4) :243-247. 被引量:1
  • 5BOETTCHER S, PERCUS A G. Extremal optimization: methods de- rived from co-evolution [ C ]//Proc of Genetic and Evolutionary Compu- tation Conference. San Francisco: Morgan Kaufmann, 1999:825- 832. 被引量:1
  • 6张国印,程慧杰,刘咏梅,姚爱红.一种新算法在基因表达谱聚类中的应用[J].计算机工程与应用,2009,45(36):216-218. 被引量:4
  • 7纪震著..粒子群算法及应用[M].北京:科学出版社,2009:249.
  • 8李晓红,熊盛武.极值优化算法研究[J].武汉理工大学学报,2009,31(3):40-44. 被引量:3
  • 9CHEN Min-rong, LI Xia, ZHANG Xi, et al. A novel particle swarm optimizer hybridized with extremal optimization [ J ]. Applied Soft Computing, 2010, 10 ( 2 ) : 367- 373. 被引量:1

二级参考文献29

  • 1高尚,杨静宇.一种新的基于粒子群算法的聚类方法[J].南京航空航天大学学报,2006,38(B07):62-65. 被引量:12
  • 2Boettcher S, Percus A G. Extremal Optimization: Methods Derived from Co-Evolution[ C]. Proceedings of t.he Genetic and Evolutionary Computation Conference[A]. San Francisco: Morgan Kaufmann, 1999:825-832. 被引量:1
  • 3Boettcher S, Percus A G. Nature' s Way of Optimizing[ J ]. Artificial Intelligence, 2000, 119 (1/2) : 275-286. 被引量:1
  • 4Bak P, Tang C, Wiesenfeld K. Self-Organized Criticality: An Explanation of the 1/f Noise [J ]. Physical Review Letters, 1987,59(4): 381-384. 被引量:1
  • 5Bak P, Sneppen K. Punctuated Equilibrium and Criticality in a Simple Model of Evolution[ J ]. Physical Review Letters, 1993, 71 (24) : 4083-4086. 被引量:1
  • 6Boettcher S, Percus A G, Grigni M. Optimizing Through Co-evolutionary Avalanches[J]. Lecture Notes in Computer Science, 2000,1917(4) :447-456. 被引量:1
  • 7Boettcher S. Extremal Optimization: Heuristics Via Co-evolutionary Avalanches[J]. Computing in Science and Engineering, 2000,6 (2) : 75 -82. 被引量:1
  • 8Boettcher S, Percus A G. Combining Local Search with Co-evolution in a Remarkably Simple Way[C] . Proc of the 2000 Congress on Evolutionary Computation USA[A]. 2000:1578-1584. 被引量:1
  • 9Boettcher S, Percus A G. Optimization with Extremal Dynarnics[J]. Complexity, 2003,8(2):57-62. 被引量:1
  • 10Boettcher S, Percus A G. Extremal Optimization for Graph Partitioning[ J ]. Physical Review E, 2001,64 (2) : 1-13. 被引量:1

共引文献5

同被引文献26

  • 1纪震,廖惠连,许文焕,姜来.粒子对算法在图像矢量量化中的应用[J].电子学报,2007,35(10):1916-1920. 被引量:10
  • 2钟杨;张文娟;王莉.基因计算[M]上海:上海教育出版社,2005. 被引量:1
  • 3孙啸;陆祖宏;谢建明.生物信息学基础[M]北京:清华大学出版社,2005. 被引量:1
  • 4李瑶.基因芯片技术--解码生物[M]北京:科学出版社,2004. 被引量:1
  • 5MacQUEEN J B. Some methods for classification and analysis of multivariate observations[A].Berkeley:University of Caifornia Press,1967.281-297. 被引量:1
  • 6MICHAEL B,EISEN M B,PAUL T. Cluster analysis and display of genome-wide expression patterns[J].Proceedings of the National Academy of Sciences(USA),1998,(25):14863-14868. 被引量:1
  • 7OHONENT. The self-organizing maps[J].Proceedings of the IEEE,1990,(09):1464-1480.doi:10.1109/5.58325. 被引量:1
  • 8DU Zhi-hua,WANG Yi-wei,JI Zhen. PK-means:a new algorithm for gene clustering[J].Computational Biology and Chemistry,2008,(04):243-247.doi:10.1016/j.compbiolchem.2008.03.020. 被引量:1
  • 9STORN R,PRICE K. Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,(04):341-359. 被引量:1
  • 10STORN R,PRICE K. Differential evolution for multi-objective optimization[J].Evolutionary Computation,2003,(04):8-12. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部