期刊文献+

碳纳米管表面改性工艺参数优化试验研究 被引量:2

Experimental investigation on parameter for optimization of the surface modification of the carbon nanotubes
下载PDF
导出
摘要 利用超声分散法对团聚的原始碳纳米管分散处理后,通过酸化、敏化、活化等步骤对其进行表面改性处理,采用表面化学镀在其表面镀覆镍层,并进行热处理.研究了碳纳米管的分散、表面改性和镀镍工艺对镀层质量的影响.实验结果表明:在乙醇溶液中,利用分散剂进行超声分散可以明显改善碳纳米管之间的团聚状况;经过酸化、敏化、活化处理后其表面可形成密集的活化点;镀镍温度在20℃左右,pH值约8.2时,所得镀层较为均匀,经410℃保温2 h的热处理后,镀层变得光滑、连续、致密,镀层的厚度为12~20 nm. The aggregated the raw CNTs were dispersed by the ultrasonic dispersion method , then the surface modification of the dispersed CNTs were disposed by acidification, sensitization and activation. Ni coated layers were deposited on the surface of the CNTs by electroless plating and a heat treatment was endured for them. The effects of dispersion, surface modification and Ni plating technology on the quality of Ni coated layer of carbon nanotubes were studied. The experimental results indicated that the dispersant in the alcohol solution can obviously improve the agglomeration of the CNTs in the ultrasonic dispersion method, the dens activated sites were formed on the surface of the carbon nanotubes after acidification, sensitization and activation. The temperature, pH and heat treatment after deposition have an important effect on the quality of Ni coated layer. When The plating temperature was at about 20℃ and the pH value was about 8.2, a more uniform Ni coated layer can be obtained. The layer will become more smooth, more continuous and more dense after heat treatment at 410℃ for 2 h. Thickness of the layer is about 12 20 nm.
作者 王誉 刘越
出处 《材料与冶金学报》 CAS 北大核心 2012年第2期116-122,131,共8页 Journal of Materials and Metallurgy
基金 沈阳市自然科学基金项目(1081228-1-007)
关键词 碳纳米管 表面改性 化学镀镍 热处理 CNTs surface modification electroless nickel plating heat treatment
  • 相关文献

参考文献15

二级参考文献60

  • 1[1]Brown I G. Metal vapor vacuum arc ion source[ J]. Appl Phys , 1988,63:4899. 被引量:1
  • 2[2]Zhang T. Formation of intermetallic compounds with a high flux pulse molybdenum ion beam in steel and aluminum[ J]. Surf Coat and Tech, 1992,51:455. 被引量:1
  • 3[3]Zhang T,Zhang H X,Ji C Z, et al . Industrialization of MEVVA source ion implantation[ J]. Surf. Coat . Technol. 2000; 128:1. 被引量:1
  • 4[4]Yang J H. Improvement of friction and wear resistance for tanta lum and carbon implanted H13 steel[J]. Chin. Phys. Lett. , 1997,10:32. 被引量:1
  • 5[1]Iijima S. Helical microtubues of graphitic carbon[J].Nature, 1991, 354: 56-58. 被引量:1
  • 6[3]Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358: 220-222. 被引量:1
  • 7[4]Ang L M, Hor T S, Xu G O, et al. Decoration of activated carbon nanotubes with copper and nickel[J].Carbon, 2000, 38(3): 363-372. 被引量:1
  • 8[5]Frackowiak E, Gautier S, Gaucher H, et al. Electrochemical storage of lithium multiwalled carbon nanotuhes[J]. Carbon, 1999, 37(1): 61 - 69. 被引量:1
  • 9[6]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J].Nature, 1997, 386: 377- 379. 被引量:1
  • 10[7]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotube at room temperature[J]. Science, 1999, 286: 1127-1129. 被引量:1

共引文献155

同被引文献50

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部