期刊文献+

具脉冲效应的非自治随机干扰的捕食-食饵系统的研究 被引量:2

Study of non-autonomous predator-prey system with impulsive effects and random perturbation
下载PDF
导出
摘要 建立一个具有脉冲效应的非自治随机的比例依赖的捕食-食饵模型,通过研究具有脉冲效应的非自治随机系统与无脉冲效应的非自治随机系统的等价性,证明该模型的有界性,均值一致有界和灭绝性等动力学性质. A model of a non-autonomous ratio-dependent predator-prey system with impulsive effects and random perturbation is builded. The equivalent relation between the solution of non-autonomous stochastic differential system with impulsive effects and that of a corresponding non autonomous stochastic differential system with impulsive effect is researched. Moreover, we prove some dynamic behavior of this system for the boundedness, uniformly bounded in the mean and extinction of this system.
作者 谭德君
出处 《纯粹数学与应用数学》 CSCD 2012年第3期285-293,共9页 Pure and Applied Mathematics
基金 福建省自然科学基金(2008J0199)
关键词 脉冲效应 随机扰动 捕食-食饵系统 有界性 impulsive effect, random perturbation, predator-prey system, boundedness
  • 相关文献

参考文献2

二级参考文献16

  • 1陈超,纪昆.基于比率的三种群混合扩散模型的动力学行为[J].纯粹数学与应用数学,2006,22(4):538-548. 被引量:3
  • 2Hwang T W. Global analysis of the predator-prey system with Beddlington-DeAnglis functional response[J]. J. Math. Anal. Appl., 2003,281:395-401. 被引量:1
  • 3Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J. Animal. Ecol., 1975,44:331-340. 被引量:1
  • 4DeAnglis D L, Goldstein R A, O'Neill R V. A model for tropic interaction[J]. Ecology, 1975,56:881-892. 被引量:1
  • 5Liu Zhihua, Yuan Rong. Stability and bifurcation in a delayed predator-prey system with Beddington- DeAngelis functional response[J] J.Math. Anal.Appl., 2004,296:521-537. 被引量:1
  • 6Zhang Shuwen, Chen Lansun. A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect[J]. Chaos, Solitons and Fractals, 2006,27:237-248. 被引量:1
  • 7Yan Jurang, Zhao Aimin. Oscillation and stability of linear impulsive delay differential equations[J]. J. Math. Anal. Appl., 1998,227:943-969. 被引量:1
  • 8Beretta E,Kuang Y.Global Analyses in Some Delayed Ratio-dependent Predator-prey Systems. Nonlinear Analysis . 1998 被引量:1
  • 9Kuang Y.Delay Differential Equations with Applications in Population Dynamics. . 1993 被引量:1
  • 10Arditi R,Ginzburg L R.Coupling in Predator-prey Dynamics: Ratio-dependence. Journal of Theoretical Biology . 1989 被引量:1

共引文献14

同被引文献15

  • 1任庆军,窦霁虹.具有非单调功能反应和脉冲扰动的捕食系统的分析[J].纯粹数学与应用数学,2006,22(4):444-448. 被引量:5
  • 2Roberts M G,Heesterbeek J A P.Bluff your way in epidemic models[J].Trends Microbial,1993,1:343-348. 被引量:1
  • 3Roberts M G,Kao R R.The dynamics of an infectious disease in a population with birth pulses[J].Mathematical Biosciences,1998,149:23-36. 被引量:1
  • 4Chattopadhyay J,Arino O.A predator-prey model with disease in the prey[J].Nonlinear Analysis,1999,36(3):749-766. 被引量:1
  • 5Shi Hongjing,Duan Zhisheng,Chen Guanrong.An SIS model with infective medium on complex networks[J].Physical A,2008,387:2133-2144. 被引量:1
  • 6Huang Dongwei,Wang Hongli.Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics[J].Chaos,Solitons and Fractals,2006,27(4):1072-1079. 被引量:1
  • 7Arnold L.Stochastic Differential Equations:Theory and Applications[M].New York:Wiley,1972:377-406. 被引量:1
  • 8Lin Yuguo,Jiang Daqing,Wang Shuai.Stationary distribution of a stochastic SIS epidemic model with vaccination[J].Physic A,2014,394:187-197. 被引量:1
  • 9Gan Chunbiao,Lei Hua.Stochastic dynamical analysis of a kind of vibro-impact system under muitiple harmonic and random excitations[J].Journal of Sound and Vibration,2011,330:2174-2184. 被引量:1
  • 10李顺异,熊佐亮,古仁国.一类具有阶段结构的食物链系统[J].数学的实践与认识,2008,38(13):102-109. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部