期刊文献+

一类具有阶段结构的食物链系统 被引量:2

A Class of Food Chain System with Stage Structure
原文传递
导出
摘要 研究了一类具有阶段结构的食物链模型,分析了系统平衡点的稳定性,运用数值模拟展示了系统周期性振动,混沌等复杂的动力学行为,并分析了阶段结构对系统复杂行为的影响. A class of food chain system with stage structure is studied. The stability of the equilibrium points is investigated, by using numerical simulations showing system periodic oscillation, chaos and so on complex dynamics behaviors, and has analyzed the stage structure to the system complex behavior influence.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第13期102-109,共8页 Mathematics in Practice and Theory
基金 江西省自然科学基金(0611084)
关键词 阶段结构 食物链 稳定性 混沌 stage structure food chain stability chaos
  • 相关文献

参考文献9

  • 1Aiello W G, Freedman H I. A time delay model of single-species growth with stage structure[J]. Math Biosci, 1990,101 (2) : 139-153. 被引量:1
  • 2Dai B X, Zhang N, Zou J Z. Permanence for the Michaelis-Menten type discrete three-species ratio-dependent food chain model with delay[J ]. Math Anal Appl, 2006,324 (1) : 728-738. 被引量:1
  • 3Teng Z D, Abdurahman X. On the extinction for non-autonomous food chain systems with delays[J]. Nonlinear Anal Real World Appl, 2006,7 (2) : 167-186. 被引量:1
  • 4Sun Y G, Saker S H. Positive periodic solutions of discrete three-level food-chain model of Holling type Ⅱ[J]. Appl Math Comput, 2006,180 (1) : 353-365. 被引量:1
  • 5王俊博,柴立和.具有时滞效应的三物种食物链混沌行为研究[J].自然科学进展,2005,15(8):1020-1024. 被引量:4
  • 6Chen Y Y, Yu J, Sun C J. Stability and Hopf bifurcation analysis in a three-level food chain system with delay[J]. Chaos, Solitons & Fractals, 2007,31 (3) : 683-694. 被引量:1
  • 7Xu R, Chaplain M A J, Davidson F A. A Lotka-Volterra type food chain model with stage structure and time delays[J]. Math Anal Appl, 2006,315 (1) : 90-105. 被引量:1
  • 8Yamaguchia M, Takeuchib Y, Ma W B. Dynamical properties of a stage structured three-species model with intraguild predation[J]. Comp Appl Math, 2007,201 (2) : 327-338. 被引量:1
  • 9Song X Y, Chen L S. Optimal harvesting and stability for a two-species competitive system with stage structure[J]. Math Biosci,2001,170(2) : 173-186. 被引量:1

二级参考文献7

  • 1徐克学.生物数学[M].北京:科学出版社,2001.51. 被引量:20
  • 2Murray J D. Mathematical Biology. New York: Springer, 2002 被引量:1
  • 3Hastings A, Powell T. Chaos in three species food chain.Ecology, 1991, 72:896-903 被引量:1
  • 4Sunita G, Naji R K. Chaos in three species ratio dependent food chain. Chaos Solitons & Fractals, 2002, 14:771-778 被引量:1
  • 5McCann K, Yodzis P. Biological conditions for chaos in a threespecies food chain. Ecology. 1994, 75(2): 561-564 被引量:1
  • 6Ruxton G D. Chaos in a three-species food chain with a lower bound on the bottom population. Ecology, 1996, 77 (1):317-319 被引量:1
  • 7SunitaG, Naji R K. Order and Chaos in predator to prey ratiodependent food chain. Chaos Solitons & Fractals, 2003, 18:229-239 被引量:1

共引文献3

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部