期刊文献+

车桥系统空间非平稳随机分析 被引量:10

Spatial Train-bridge Coupling System Non-stationary Stochastic Responses Analysis
下载PDF
导出
摘要 采用虚拟激励法将轨道高低、方向和左右轨高差不平顺转化为一系列简谐荷载,将非平稳振动分析转化为确定性的时间历程分析,进行三维车桥系统空间非平稳随机分析。采用分离迭代法求解车桥系统运动方程,运用三倍差原理确定系统响应的最大和最小值,讨论系统响应的功率谱密度。研究表明:车体振动、桥梁跨中横向响应和轮对受到的横向轮轨力的随机性较大,轨道不平顺是其主要影响因素,桥梁跨中垂向响应及轮对受到的垂向轮轨力主要由确定性荷载引起。 The pseudo-excitation method (PEM) was applied in the spatial train-bridge coupling system non-sta tionary stochastic responses analysis. Track vertical profile irregularity, track alignment irregularity and track height difference irregularity of left and right rails were transformed into the superposition of a series of deter- ministic pseudo harmonic surface unevenness and non-stationary random vibration analysis was translated into deterministic time-history analysis. Separate iteration was applied in solving the coupling system equation. The maximum and minimum system responses were obtained on the basis of the 3o principle. PSD of the system re- sponses were discussed. The results show as follows.. Responses of the train body, lateral responses of the bridge and lateral wheel-rail forces have large randomness,and track irregularities are the primary influence fac- tors;bridge vertical responses and vertical wheel-rail forces are caused by deterministic loads.
出处 《铁道学报》 EI CAS CSCD 北大核心 2012年第6期88-94,共7页 Journal of the China Railway Society
基金 国家自然科学基金(50678150 51008250) 新世纪优秀人才支持计划(NCET-10-0701) 国家863计划(2011AA11A103) 高等学校博士学科点专项科研基金(20110184110020) 四川省杰出青年学术技术带头人计划(2010JQ0018) 四川省应用基础研究(2010JY0026) 中央高校基本科研业务费专项资金(SWJ-TU12CX062)
关键词 桥梁工程 随机响应 功率谱密度 虚拟激励法 车桥系统 轨道不平顺 bridge engineering stochastic response PSD PEM train-bridge coupling system ~ track irregularity
  • 相关文献

参考文献10

二级参考文献21

  • 1林家浩,张守云,吕峰,张亚辉.移动简谐荷载作用下桥梁响应的高效计算[J].计算力学学报,2006,23(4):385-390. 被引量:18
  • 2Lou P, Zeng Q Y. Formulation of equations of motion of finite element form for vehicle-track-bridge interaction system with two types of vehicle model [J]. International Journal for Numerical Methods in Engineering, 2005, 62: 435 -474. 被引量:1
  • 3Cheung Y K, Au F T K, Zhen D Z, CHENG Y S. Vibration of multi-span non-uniform bridges under moving vehicle and trains by using modified vibration fimctions [J]. Sound and Vibration, 1999, 228(3): 611-628. 被引量:1
  • 4Henchi K, Fafard M, Talbot M, Hatt G. An efficient algorithm for dynamic analysis of bridges under moving vehicle using a coupled modal and physical components approach [J]. Sound and Vibration, 1998, 212(4): 663 -683. 被引量:1
  • 5Lin J H, Zhang Y H. 《Vibration and Shock Handbook》[M]. Chapter 30: "Seismic Random Vibration of Long-span Structures", edited by C.de Silva, CRC Press: Boca Raton, Florida, 2005. 被引量:1
  • 6Koh C G, Ong J S Y, Chua D K H, Feng J. Moving element method for train-track dynamics [J]. Intemational Journal for Numerical Methods in Engineering. 2003, 56: 1549-1567. 被引量:1
  • 7Zhong W X. Duality system in applied mechanics and optimal control [M]. Boston: Kluwer Academic Pub, 2004. 被引量:1
  • 8Zhong W X, Willians F W. A precise time step integration method [J]. J. Mech. Engrg. Sci., Proc. Inst. Mech. Eng., Part C, 1994, 208(C6): 427-430. 被引量:1
  • 9Zienkiewicz O C. The finite element method [M]. Third Edition. McGraw-Hill Inc., 1977. 被引量:1
  • 10林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2006. 被引量:24

共引文献73

同被引文献101

引证文献10

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部