期刊文献+

基于多尺度并行免疫克隆优化聚类算法 被引量:4

Multi-scale parallel immune clone optimization clustering algorithm
原文传递
导出
摘要 针对无监督分类问题,提出一种多尺度并行免疫克隆优化聚类算法.算法中,进化在多个子群之间并行进行,不同子群的抗体根据子群适应度采用不同变异尺度.进化初期,利用大尺度变异子群实现全局最优解空间的快速定位,同时变异尺度随着适应值的提升逐渐降低;进化后期,利用小尺度变异子群完成局部解空间的精确搜索.将新算法与其他聚类算法进行比较,所得结果表明新算法具有较好的聚类性能和鲁棒性. A novel multi-scale parallel artificial immune clone algorithm for unsupervised clustering(MSPAICC) is presented,in which,evolutions of subgroups are performed in parallel with the different mutation strategies.The mutation capability of an individual is determined by the competition among subgroups and subgroup fitness value.The larger mutation operator is used to quickly localize the global optimal space at the early evolution,while the smaller mutation operator whose scale gradually reduces are adopted to improve the local search ability at the later evolution.The experimental results show the proposed method can improve clustering performance and the robustness compared with other clustering algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2012年第6期819-826,共8页 Control and Decision
基金 国家自然科学基金项目(61074076) 中国博士后科学基金项目(20090450119) 中国博士点新教师基金项目(20092304120017) 黑龙江省博士后基金项目(LBH-Z08227)
关键词 聚类算法 免疫克隆优化 变异算子 子群适应度 clustering algorithm immune clone optimization mutation operator subgroup fitness value
  • 相关文献

参考文献10

二级参考文献65

共引文献148

同被引文献46

  • 1夏元明.原铝铸造优化配铝算法分析与软件开发[J].轻金属,2005(7):38-41. 被引量:2
  • 2Timmis J,Hone A,Stibor T,et al.Theoretical advances in artificial immune systems[J].Theoretical Computer Science,2008,403(1):11-32. 被引量:1
  • 3de Castro L N,Von Zuben F J.Learning and optimization using the clonal selection principle[J].IEEE Transactions on Evolutionary Computation,2002,6(3):239-251. 被引量:1
  • 4Li Zhonghua,Zhang Yunong,Tan Hongzhou.IA-AIS:an improved adaptive artificial immune system applied to complex optimization problems[J].Applied Soft Computing,2011,11(8):4692-4700. 被引量:1
  • 5Graaff A J,Engelbrecht A P.Clustering data in an uncertain environment using an artificial immune system[J].Pattern Recognition Letters,2011,32(2):342-351. 被引量:1
  • 6Laurentys C A,Ronacher G,Palhares R M,et al.Design of an artificial immune system for fault detection:a negative selection approach[J].Expert Systems with Applications,2010,37(7):5507-5513. 被引量:1
  • 7Gong Tao,Cai Zixing.Normal model and BPNN-based immunization of anti-worm Web system[J].International Journal of Multimedia and Ubiquitous Engineering,2006,1(3):23-26. 被引量:1
  • 8Oguz F,Ismail B,Erkan U.A color image watermarking scheme based on artificial immune recognition system[J].Expert Systems with Applications,2011,38(3):1942-1946. 被引量:1
  • 9Konstantinos K D,Pantelis A A,George K M.Automatic point correspondence using an artificial immune system optimization technique for medical image registration[J].Computerized Medical Imaging and Graphics,2011,35(1):31-41. 被引量:1
  • 10Aydin I,Karakose M,Akin E.Artificial immune classifier with swarm learning[J].Engineering Applications of Artificial Intelligence,2010,23(8):1291-1302. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部