期刊文献+

基于柯西变异的免疫单克隆策略 被引量:9

Immune Monoclonal strategy based on the Cauthy mutation
下载PDF
导出
摘要 系统地阐述了基于细胞克隆选择学说的克隆算子,将其应用于进化策略,并利用柯西变异替代传统进化策略中的高斯变异,提出了改进的进化策略算法———基于柯西变异的免疫单克隆策略算法,并利用Markov链的有关性质,证明了该算法的收敛性.理论分析和仿真实验表明,与传统的进化策略算法以及免疫克隆算法相比,基于柯西变异的免疫单克隆策略算法不仅有效克服了早熟问题、保持了解的多样性,而且收敛速度比前两者都快. Based on the clonal selection theory, the main mechanisms of clone are analyzed. An improved evolutionary strategy algorithm - Immune Monoclonal Strategy algorithm based on the Cauthy Mutation (IMCSCM) is presented, in which the Gauss mutation in the Classical Evolutionary Strategies algorithm (CES) is replaced by the Cauthy one. Compared with CES and the Immune Monoclonal Strategy algorithm applying the Gauss Mutation (IMCSCM), IMCSCM is shown to be an evolutionary strategy capable of avoiding prematurity, increasing the converging speed and keeping the variety of solution in the simulations. Using the theories of Markov Chain, its convergence is proved.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第4期551-556,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(60133010)
关键词 克隆选择 进化算法 进化策略 MARKOV链 柯西变异 Computer simulation Convergence of numerical methods Optimization
  • 相关文献

参考文献15

  • 1Schwefel H P, Mnner R. On Parallel Problem Solving from Nature[A]. Lecture Notes in Computer Science, Proc of 1st Int1 Conf[C]. Berlin: Springer-Verlag, 1991. 被引量:1
  • 2陈国良等编著..遗传算法及其应用[M].北京:人民邮电出版社,1996:433.
  • 3林学颜,张玲主编..现代细胞与分子免疫学[M].北京:科学出版社,1999:570.
  • 4陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16. 被引量:8
  • 5Fogel D B, Atmar J W. Comparing Genetic Operators with Gaussian Mutations in Simulated Evolutionary Processing Using Linear Systems[J]. Biological Cybernetics, 1993, 63(2): 111-114. 被引量:1
  • 6Schwefel H P. Evolutionary Optimum Seeking[M]. New York: John Wiley&Son, 1995. 被引量:1
  • 7Szu H H, Hartley R L. Nonconvex Optimization by Fast Simulated Annealing[J]. Proceeding of IEEE, 1987, 75(3): 1538-1540. 被引量:1
  • 8Kappler C. Are Evolutionary Algorithms Improved by Larger Mutations?[A]. In Parallel Problem Solving from Nature (PPSN) Ⅳ[C]. Berlin: Springer-Veralg, 1996. 346-355. 被引量:1
  • 9Yao X. A New Simulated Annealing Algorithms[J]. Int J of Computer Math, 1995, 56(1): 162-168. 被引量:1
  • 10Yao X, Liu Y. Fast Evolutionary Programming[A]. Proc of the Fifth Annual Conference on Evolutionary Programming[C]. Cambridge: MIT Press, 1996. 451-461. 被引量:1

共引文献23

同被引文献59

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部