摘要
利用了高斯取整函数 int(x) =[x]和定义了判断函数 F(x1 ,y1 ,x2 ,y2 ) (值为 0或 1) ,使问题转化为求 max∑n1 F(x1 ,y1 ,a,b) ,根据 F的定义使问题的求解过程线性化、规范化 .从而使问题转化成求解二元线性不等式组的问题 ,为此可方便地借助计算机求出最佳结果 .在解答问题二时 ,将角度离散化 ,通过等价距离 max{ |dx|,|dy|}≤ dx2 +dy2≤ 2 max{ dx,dy} ,使问题转化为问题一的情形 ,利用问题一的算法求解 ;最后给出 n口旧井均可利用的充要条件和简明算法 .根据算法求得的最优解是一个区域而不是一个点 。
In this article,we use Gauss integer function int(x):[x] subtly and define a judyement function f(x 1,y 1,x 2,y 2)(the value is o or l),then the dproblem is changed to get the nesult of Max∑n1F(x 1,y 1,a,b)allording to the dgfinition of F,we make the procedure of solving linearly,normaly,The porblem is changecl to solving linearly,normaly.The problem is changed to solving the linear inequality group with two unknown,thus,we can get the optimal solution by the computer.when we solue the second problem.we discretization the angles,through the equivalent distance max{|dx|,|dy|}≤dx 2+dy 2≤2 max{|dx|,|dy|}x.then the problem is chenged to problem 1.At last, we give the necessary and sufficient condition,also with the algorithm.The optimal solution is an area not a point,this provide a choice space for the application of the result of the model.
出处
《广西民族学院学报(自然科学版)》
CAS
2000年第1期62-66,共5页
Journal of Guangxi University For Nationalities(Natural Science Edition)