期刊文献+

最小生成树SVM的模拟电路故障诊断方法 被引量:9

Fault Diagnosis Approach for Analog Circuits Using Minimum Spanning Tree SVM
下载PDF
导出
摘要 提出最小生成树的支持向量机模拟电路故障诊断方法,通过小波分解提取电路故障特征,在特征空间中以故障类的可分性测度为权值构造最小生成树,得到具有聚类属性的故障子类划分,从而优化故障决策树节点的分布。按照最小生成树的结构建立具有较大分类间隔的多分类支持向量机,能够有效地提高模拟电路故障诊断的正确率。该方法简化支持向量机的结构,在实例电路的故障诊断中获得更高的诊断精度和效率,其性能优于常用的支持向量机方法。 A fault diagnosis approach for analog circuits based on minimum spanning tree(MST) support vector machine(SVM) is proposed.Fault features of analog circuits are extracted by wavelet analysis method.By taking separability measure of fault classes as weights of edges in feature space,the MST is generated and the sub-class separation for fault groups with clustering property is achieved.The node distribution of fault decision tree is then optimized.Hierarchical multi-class SVMs with large margins are constituted according to the structure of MST,which can effectively improve the fault diagnosis accuracy of analog circuits.The presented approach simplifies the structure of multiclass SVMs.Case study shows that our approach achieves more precision and higher efficiency comparing with other conventional SVM methods in analog circuit fault diagnosis.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第3期412-417,共6页 Journal of University of Electronic Science and Technology of China
基金 部级科研项目 国家自然科学基金(60971036) 中央高校基本科研业务费专项资金(ZYGX2009J071)
关键词 故障诊断 最小生成树 可分性测度 支持向量机 fault diagnosis minimum spanning tree separability measure support vector machine
  • 相关文献

参考文献12

  • 1AMINIAN F, AMINIAN M. Fault diagnosis of analog circuits using Bayesian neural networks with wavelet transform as preprocessor[J]. Journal of Electronic Testing, 2001, 17(1): 29-36. 被引量:1
  • 2AMINIAN E AMINIAN M, COLLINS H W, et al. Analog fault diagnosis of actual circuits using neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 544-550. 被引量:1
  • 3SIWEK K, OSOWSKI S, MARKIEWlCZ T. Support vector machine for fault diagnosis in electrical circuits[C]// Proceedings of the 7th Nordic Signal Processing Symposium. Rejkjavik, Iceland: IEEE, 2006, 7: 342-345. 被引量:1
  • 4LONG Bing, HUANG Jian-guo, TIAN Shu-lin. Least squares support vector machine based analog circuitfault diagnosis using wavelet transform as preprocessor[C]// International Conference on Communications, Circuits and Systems. Fujian: IEEE, 2008, 5:1026 -1029. 被引量:1
  • 5孙永奎,陈光,李辉.基于自适应小波分解和SVM的模拟电路故障诊断[J].仪器仪表学报,2008,29(10):2105-2109. 被引量:31
  • 6LI Hua, ZHANG Yong-xin. An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA[C]//The Ninth International Conference on Electronic Measurement & Instruments. Beijing: IEEE, 2009, 4:1023-1027. 被引量:1
  • 7WANG An-na, LIU Jun-fang, WU Jie. Research on soft fault diagnosis algorithm of analogy circuits based on DDAGSVMs[C]//Proceeding of the 2007 IEEE International Conference on Integration Technology. [S.l.]: IEEE, 2007, 3:499-503. 被引量:1
  • 8FEI B, LIU J. Binary tree of SVM: a new fast multiclass training and classification algorithm[J]. IEEE Transactions on Neural Networks, 2006, 17(3): 696-704. 被引量:1
  • 9VURAL V, DY J G A Hierarchical method for multi-Class support vector machines[C]//Twenty-First International Conference on Machine Learning. [S.l.]: [s.n.], 2004: 831- 838. 被引量:1
  • 10AHUJA R K, MAGNANTI T L, ORLIN J B. Network flows :theory, algorithm, and applications (English Version) [M]. Beijing: Mechanical Industry Press, 2005: 510-536. 被引量:1

二级参考文献28

共引文献43

同被引文献122

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部