期刊文献+

基于ICA和GSPSO-SVM的人脸识别方法 被引量:5

Face recognition based on ICA and GSPSO-SVM
下载PDF
导出
摘要 针对人脸识别中,利用粒子群算法训练支持向量机进行分类识别时存在易陷入局部最优和收敛速度慢的问题,提出一种基于雁群优化算法的人脸识别方法。将主成分分析与独立成分分析相结合提取人脸特征,利用支持向量机进行分类,在分类识别的过程中,引入雁群优化算法以提高速度和效率。实验结果表明,与标准粒子群算法相比,改进的粒子群算法提高了人脸识别率,具有较快的识别速度。 Because the particle swarm optimization may easily fall into local optimum and takes long runtime while training support vector machine as a classifier for human face recognition,ageese swarm optimization algorithm was proposed.The principle component analysis and the independent component analysis were combined to extract human face features,and the support vector machine was used as a classifier.To achieve higher speed and recognition accuracy,the geese swarm optimization algorithm was introduced in the classification stage.The experimental results show that the human face recognition system using the improved particle swarm optimization algorithm was improved in not only the recognition rate but also the efficiency compared with the standard particle swarm optimization.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第12期4302-4305,4310,共5页 Computer Engineering and Design
基金 山西省自然科学基金项目(2013011016-1) 教育部博士点基金项目(2011081047)
关键词 人脸识别 主成分分析 独立成分分析 支持向量机 粒子群算法 face recognition principal component analysis(PCA) independent component analysis(ICA) support vector machine(SVM) particle swarm optimization(PSO)
  • 相关文献

参考文献13

二级参考文献169

共引文献245

同被引文献46

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2张宝昌,陈熙霖,山世光,高文.基于支持向量的Kernel判别分析[J].计算机学报,2006,29(12):2143-2150. 被引量:10
  • 3ZHAO W,CHELLAPPA R,PHILLIPS P J,et al.Face recognition:a literature survey[J].ACM Computing Surveys,2003,35(4):399-459. 被引量:1
  • 4LOWE D G.Distinctive image features from scaleinvariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 5KRIZAJ J,STRUC V,PAVESIC N.Adaptation of SIFT features for robust face recognition[C] //Proceedings of the 7th International Conference on Image Analysis and Recognition,Aveiro,2010:394-404. 被引量:1
  • 6PAN Y Z,GE S S,HE H S.Face recognition using ALLE and SIFT for human robot interaction[J].Lecture Notes in Computer Science,2009,57(44):53-62. 被引量:1
  • 7ZHOU Y H,CHENG Z X,JING L,et al.Preclassification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device[J].Applied Intelligence,2014,40(4):613-622. 被引量:1
  • 8LU Guifu,ZOU Jian,WANG Yong.Incremental complete LDA for face recognition[J].Pattern Recognition,2012,45(7):2510-2512. 被引量:1
  • 9Ahonen T Hadid A,Pietikainen M.Face description with local binary patterns:Application to face recognition[J].IEEE Trans of Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041. 被引量:1
  • 10Guo Zhenhua,Zhang Lei,David Zhang,et al.Rotation invariant texture classification using adaptive LBP with directional statistical features[C]//17th IEEE International Conference on Image Processing,2010:285-288. 被引量:1

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部