摘要
几何参数表达的压杆挠曲线方程可以由二力杆弯曲平衡的欧拉曲线与二力杆的直线平衡状态下的变形表达式叠加而成。与挠曲线的叠加相对应,压杆的荷载也可以分解为分别作用在二力杆上的轴力与弯矩的组合及轴力与剪力的组合。将上述解析原理及压杆挠曲线方程应用到几何非线性分析和屈曲问题中,定义为解析方法,是对几何非线性问题提出的一种新解法。该文给出了解析方法的应用实例,说明无剪力条件下可以获得简洁公式。
A new method to solve geometrical nonlinear problems is presented. It has being fond that the deflection represented in terms of geometrical parameters for a compressed bar is a result of superposition by an Euler's curve for two-force member in buckling equilibrium and a diagonal line for two-force member in stable equilibrium. Corresponding with the superposition of deflections, the load case of the compressed bar is divided into an axial force with a moment and an axial force with a shear force applied to the two-force member respectively. The analytic principle and the deflection expression for compressed bars are applicable to geometrical nonlinear analysis or buckling problems. Practical applications of analytical methods show that some brief formulas can be obtained in the load case without shear forces.
出处
《工程力学》
EI
CSCD
北大核心
2012年第A01期16-19,共4页
Engineering Mechanics
关键词
屈曲
非线性分析
挠曲线表达式
解析方法
平衡判断标准
buckling
nonlinear analysis
deflection expression
analytical methods
a balance criterion