摘要
G(V,E)是一个简单图,k是一个正整数,f是一个V(C)UE(G)到{1,2,…,k}的映射.如果(?)u,∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(u),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.给出了轮与路间的多重联图的邻点可区别E-全色数,其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G)∪E(G) to {1,2,…,k}.If∨uv∈E(G),we have f(u)≠f(u),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),where C(u) = {f(u)}∪{f(uv)|uv∈E(G)}.Then f is called the adjacent vertex-distinguishing E-total coloring.The minimal number of k is called the adjacent vertexdistinguishing E-total chromatic number of G.The adjacent vertex-distinguishing E-total chromatic number of the multiple join graph of wheel and path are obtained in this paper.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第10期128-132,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(11061017)
甘肃省硕导基金(1104-10)
关键词
多重联图
邻点可区别E-全染色
邻点可区别E-全色数
the multiple join graph
adjacent vertex-distinguishing E-total coloring
adjacent vertex-distinguishing E-total chromatic number