期刊文献+

轮与路的多重联图的邻点可区别E-全染色 被引量:2

Adjacent Vertex-Distinguishing E-Total Coloring on the Multiple Join Graph of Wheel and Path
原文传递
导出
摘要 G(V,E)是一个简单图,k是一个正整数,f是一个V(C)UE(G)到{1,2,…,k}的映射.如果(?)u,∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(u),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.给出了轮与路间的多重联图的邻点可区别E-全色数,其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}. Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G)∪E(G) to {1,2,…,k}.If∨uv∈E(G),we have f(u)≠f(u),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),where C(u) = {f(u)}∪{f(uv)|uv∈E(G)}.Then f is called the adjacent vertex-distinguishing E-total coloring.The minimal number of k is called the adjacent vertexdistinguishing E-total chromatic number of G.The adjacent vertex-distinguishing E-total chromatic number of the multiple join graph of wheel and path are obtained in this paper.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第10期128-132,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(11061017) 甘肃省硕导基金(1104-10)
关键词 多重联图 邻点可区别E-全染色 邻点可区别E-全色数 the multiple join graph adjacent vertex-distinguishing E-total coloring adjacent vertex-distinguishing E-total chromatic number
  • 相关文献

参考文献3

二级参考文献18

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 3陈义.轮图的广义Mycielski图的邻强边色数[J].经济数学,2003,20(2):77-80. 被引量:3
  • 4陈祥恩,张忠辅,晏静之,张贵仓.关于几类特殊图的Mycielski图的邻点可区别全色数(英文)[J].兰州大学学报(自然科学版),2005,41(2):117-122. 被引量:13
  • 5Liu Linzhong,Zhang Zhongfu, Wang Jianfang. On the adjacent strong edge coloring of outer plane graphs[J].Mathematics Reserch and Exposition, 2005,25 : 255-266. 被引量:1
  • 6Liu Linzhong, Li Yingzheng, Zhang Zhongfu. On the adjacent strong edge coloring of halin graphs [J]. Mathematics Reserch and Exposition, 2003,23 : 241-246. 被引量:1
  • 7Zhang Zhongfu, et al. The adjacent strong edge chromatic number of graphs[J]. Applied Mathematics Letters, 2002,15:623-626. 被引量:1
  • 8李敬文 张忠辅.一些图的Mycielski图的邻强边色数.兰州交通大学学报,2005,24(3):133-135. 被引量:1
  • 9Bondy JA, Murty USR. Graph Theory with Applicatives[M]. New York, The Macmillan Press, Ltd,1976. 被引量:1
  • 10Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J of Graph Theory,1997,26(2): 73-82 被引量:1

共引文献208

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部