期刊文献+

若干多重联图的邻点可区别E-全染色 被引量:3

Adjacent Vertex-distinguishing E-total Coloring on the Multiple Join Graph of the San and Simple Graph
下载PDF
导出
摘要 G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.本文给出了扇与星、路、圈间的多重联图的邻点可区别E-全色数.其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}. Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G) ∪E(G) to {1, 2,…,k}. If arbitary uv∈E(G),we have f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v). Then f is called the adjacent vertex-distinguishing E-number of G. The minimal number or k is called the adjacent vertex-distinguishing E-total chromatic number of G. The adjacent vertex-distinguishing E-total chromatic number of the multiple join graph of fan, star,path and cycle is obtained in the paper,where C(u)= {f(u)} ∪ {f (uv) | uv∈ E(G) }.
出处 《兰州交通大学学报》 CAS 2009年第1期149-152,156,共5页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(No.10771091) 甘肃省教育厅科研基金资助(No.0604-05) 兰州交通大学教改课题(2008-65)
关键词 多重联图 邻点可区别E-全染色 邻点可区别E-全色数 multiple join graph adjacent vertex-distinguishing E-total coloring adjacent vertex-distinguishing E-total chromatic number
  • 相关文献

参考文献6

二级参考文献15

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2陈义.轮图的广义Mycielski图的邻强边色数[J].经济数学,2003,20(2):77-80. 被引量:3
  • 3Liu Linzhong,Zhang Zhongfu, Wang Jianfang. On the adjacent strong edge coloring of outer plane graphs[J].Mathematics Reserch and Exposition, 2005,25 : 255-266. 被引量:1
  • 4Liu Linzhong, Li Yingzheng, Zhang Zhongfu. On the adjacent strong edge coloring of halin graphs [J]. Mathematics Reserch and Exposition, 2003,23 : 241-246. 被引量:1
  • 5Zhang Zhongfu, et al. The adjacent strong edge chromatic number of graphs[J]. Applied Mathematics Letters, 2002,15:623-626. 被引量:1
  • 6李敬文 张忠辅.一些图的Mycielski图的邻强边色数.兰州交通大学学报,2005,24(3):133-135. 被引量:1
  • 7Bondy JA, Murty USR. Graph Theory with Applicatives[M]. New York, The Macmillan Press, Ltd,1976. 被引量:1
  • 8Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J of Graph Theory,1997,26(2): 73-82 被引量:1
  • 9Bazgan C,Harkat-Benhamdine A,Li H,et al.On the vertex-distinguishing proper edge-coloring of graphs.J Combin Theory,Ser B,1999,75: 288-301 被引量:1
  • 10Balister P N,Bollobas B,Schelp R H.Vertex distinguishing colorings of graphs with △(G)=2.Discrete Mathematics,2002,252(2): 17-29 被引量:1

共引文献195

同被引文献15

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部