摘要
K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率高等特点。在K-medoids聚类算法的基础上,借鉴ACO算法的优点,提出了一种新的聚类算法,它提高了聚类的准确率,算法的稳定性也比较高。通过仿真实验,验证了算法的可行性和先进性。
K-medoids algorithm as a kind of clustering algorithm, not easily affected by extreme data, the influence of broad adaptability, but K-medoids clustering algorithm accuracy is not stable, average accuracy, low in the real,clustering analysis effect is poorer. ACO is a bionic optimization algorithm, which has strong robustness, can be unified easily with other method, has high efficiency. K-medoids clustering algorithm based on ACO algorithm merit reference, this paper proposes a new clustering algorithm. It raises the clustering algorithm, and the stability of the accuracy is high. Finally, simulation experiments show the feasibility and advantage of this algorithm.
出处
《计算机工程与应用》
CSCD
2012年第16期136-139,152,共5页
Computer Engineering and Applications
基金
国家自然科学基金(No.10926189
No.10871031)
湖南省自然科学衡阳联合基金(No.10JJ8008)
湖南省教育厅重点项目(No.10A015)