期刊文献+

多数据库中全局负关联规则挖掘研究 被引量:2

Novel Mining Method of Global Negative Association Rules in Multi-database
下载PDF
导出
摘要 全局负关联规则挖掘是多数据库关联信息挖掘的重要研究内容,具有广泛的应用范围和使用价值.合并各子数据库的负关联规则是现有全局负关联规则挖掘常用的方法,但数据密度大、规则不全面及运算时间高等问题影响了已有全局负关联规则挖掘方法的效率.本文给出一种新的全局负关联规则挖掘算法,其具体步骤为:(1)扫描各子数据库,建立多数据库频繁模式树;(2)依据频繁项集全局一致性原则,对多数据库频繁模式树执行精简操作;(3)在此基础上产生全局极小非频繁项集;(4)依据极大频繁项集向上闭包原则,产生全局非频繁项集;(5)在规则相关度的基础上提取全局负关联规则.大量的对比实验结果表明,本文算法具有快速发现全局负关联规则的能力. Recently,mining global negative association rules in multi-databases has beome an important research area.Most existing researches focus on unifying all negative rules from different single databases into a unit one.However,these methods suffer form some problems such as high data density,incomplete rules and high time consumption.In this paper,a novel method is presented,i.e.,GNAR(Global Negative Associate Rules in multi-databases),to tackle these problems.Firstly,a Multi-Database Frequent Pattern tree(MDFP-tree) is constructed by scaning multi-databases.Secondly,the MDFP-tree is pruned according to the principle of global consistency of frequent itemsets.Thirdly,the global small infrequent itemset(SIFS) is produced and the global infrequent itemset is generated with the upward closure frequent itemsets.Finally,the global negative association rules are extracted based on correlation metric.Experimental results show that our proposed method has the ability of mining negative association rules in multi-databases quickly.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第6期1171-1175,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60775037 60933013)资助 安徽省教育厅自然科学基金项目(KJ2011Z321)资助
关键词 多数据库 数据挖掘 负关联规则 全局负关联规则 multiple databases data mining negative association rules global negative association rules
  • 相关文献

参考文献2

二级参考文献19

  • 1董祥军,王淑静,宋瀚涛,陆玉昌.负关联规则的研究[J].北京理工大学学报,2004,24(11):978-981. 被引量:33
  • 2Brin S,Motwani R,Silverstein C.Beyond market:Generalizing association rules to eorrelations[C]//Processing of the ACM SIGM OD Conference 1997.New York:ACM Press, 1997:265-276. 被引量:1
  • 3Savasere A,Omiecinski E,Navathe S.Mining for strong negative associations in a large database of customer transaction[C]//Proceedings of the IEEE 14th Int Conference on Data Engineering.Los Alamitos: IEEE-CS, 1998 : 494-502. 被引量:1
  • 4Wu Xin-dong,Zhang Cheng-qi,Zhang Shi-ehao.Mining both positive and negative association rules[C]//Proceedings of the 19th International Conference on Machine Learning (ICML-2002).San Francisco:Morgan Kaufmann Publishers,2002:658-665. 被引量:1
  • 5Antonie M-L,Zaiane O.Mining positive and negative association rules[C]//LNCS 3202,Proceedings of 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD04),Pisa,Italy .Berlin Heidelberg :Springer-Verlag,2004: 27-38. 被引量:1
  • 6Dong X,Sun F,Han X,et al.Study of positive and negative association rules based on rauIti-confidence and Chi-squared test[C]// LNCS 4093.Berlin Heidelberg: Springer-Verlag, 2006: 100-109. 被引量:1
  • 7Dong X,Niu Z,Shi X,et al.Mining both positive and negative association rules from frequent and infrequent itemsets [C]//LNCS 4632:3rd International Conference on Advanced Data Mining and Applications,ADMA 2007.Berlin Heidelberg:Springer-Verlag,2007: 122-133. 被引量:1
  • 8Ramkumar T,Srinivasan R.Modified algorithms for synthesizing high-frequency rules from different data sources[J].Knowledge and Information Systems, 2008,17 (3) : 313-334. 被引量:1
  • 9AGRAWAL R,IMIELINAKI T,SWAMI A.Mining association rules between sets of items in large databases[C] //Proc of the ACM SIGMOD Conference on Management of Data.Washington,D C,USA:ACM,1993:207-216. 被引量:1
  • 10KLEMETTINEN M,MANNILA H,RONKAINEN P P,et al.Finding interesting rules from large sets of discovered association rules[C] //Proc of the Third Int'l Conference on Information and Knowledge Management.New York:ACM,1994:401-407. 被引量:1

共引文献16

同被引文献8

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部