期刊文献+

不同膜微生物燃料电池的性能 被引量:4

ELECTRICITY GENERATION COMPARISON OF TWO-CHAMBER MICROBIAL FUEL CELLS WITH DIFFERENT MEMBRANE
下载PDF
导出
摘要 以乙酸钠为碳源,铁氰化钾溶液为电子受体,以普通双极膜(膜A)、特种双极膜(膜B)和质子交换膜(膜C)构建的微生物燃料电池进行产电性能的实验研究。得到如下实验结果:膜A开路电压为0.77V,最大体积功率密度为3.23W/m3,由线性拟合方程可知其内阻为91.22Ω;膜B电池的开路电压0.748V,最大体积功率密度为3.52W/m3,内阻为92.26Ω;膜C电池的开路电压为0.796V,最大体积功率密度为3.75W/m3,内阻为79.29Ω。结果表明:各种膜在微生物燃料电池产电性能方面相近。通过膜效率的分析,在微生物燃料电池中,采用离子交换膜替换价格昂贵的质子交换膜是可行的。 In this paper, performance of microbial fuel cell constructed film A, film B and film C, with acetate as carbon source, potassium ferricyanide solution as the electron acceptor, has been studied. The capacity of the microbial fuel cell electrical performance was tested and several membrane microbial fuel cell cost-effective was analyzed. The results show that: open-circuit voltage of membrane A is 0.77V, maximum volume power density is 3.23W/m3, it can be seen from the linear regression equation: the internal resistance is 91.22Ω; open circuit voltage of cell with membrane B is 0. 748V, maximum volume power density is 3.52W/m3 , the internal resistance is 92.26Ω; open circuit voltage of cell with membrane C is 0. 796V, maximum volume power density 3.75W/m3, the internal resistance 79.29Ω. Through the analysis of the membrane efficiency, it is feasible that the expensive proton exchange membrane is replaced by the ion exchange membrane in the microbial fuel cells.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第5期882-886,共5页 Acta Energiae Solaris Sinica
基金 国家高技术研究发展(863)计划(2007AA05Z154) 广州能源研究所所长基金(08073210011)
关键词 离子交换膜 质子交换膜 微生物燃料电池 ion-exchange membrane proton exchange membrane microbial fuel cell
  • 相关文献

参考文献1

二级参考文献17

  • 1莫志军,胡林会,朱新坚.燃料电池广义内阻的在线测量[J].电源技术,2005,29(2):95-98. 被引量:13
  • 2詹姆斯,安德鲁..燃料电池系统--原理,设计,应用[M]..北京:科学出版社,,2006..35-42.. 被引量:2
  • 3Wagner N,Schnurnberger W,Muller B,et al.Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells[J].Electrochimica Acta,1998,43(24):3785 - 3793. 被引量:1
  • 4Rabaey K,Verhaege M.Microbial fuel cells:novel biotechnology for energy generation[J].Trends in Biotechnology,2005,23(6):291 - 298. 被引量:1
  • 5Logan B E.Simultaneous wastewater treatment and biological electricity generation[J].Water Science and Technology,2005,52(1-2):31 - 37. 被引量:1
  • 6Cheng S H,Liu H,Logan B E.Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells[J].Environmental Science Technology,2006,40:364 - 369. 被引量:1
  • 7Cheng S H,Liu H,Logan B E.Increased performance of singlechamber microbial fuel cells using an improved cathode structure[J].Electrochemistry Communications,2006,8:489-494. 被引量:1
  • 8Rabaey K,Boon N,Siciliano S D,et al.Biofuel cells select for microbial consortia that self-mediate electron transfer[J].Applied and Environmental Microbiology,2004,70:5373 - 5382. 被引量:1
  • 9Cheng S A,Liu H,Logan B E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J].Environmental Science Technology,2006,40:2426- 2432. 被引量:1
  • 10Aelterman P,Rabaey K,Pham H T,et al.Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells[J].Environmental Science Technology,2006,40:3388-3394. 被引量:1

共引文献117

同被引文献46

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部