期刊文献+

利用农杆菌介导法获得转codA基因麻竹再生植株的研究 被引量:9

Getting Trans-codA Gene Regeneration Bamboo of Dendrocalamus latiflorus Munro Through Agrobacterium Mediated Method
下载PDF
导出
摘要 温度是影响植物生存和生长发育的基本环境因子之一。大多数植物对低温等都是高度敏感的,低温伤害现象尤为突出,几乎涉及所有的经济植物。因此,改善植物的抗低温冻害的胁迫能力,可以显著提高植物的生长范围、增加产量。codA基因可以增加植物对低温胁迫的耐受能力,而Rd29A是一种胁迫诱导特异表达启动子,胁迫条件可以快速诱导基因表达,也可以减少由于转基因过量表达带来的不利影响。研究以麻竹花药离体培养的愈伤组织为材料,采用农杆菌介导法,探讨了影响麻竹愈伤组织遗传转化效率的主要因子。结果表明,潮霉素的最佳筛选浓度是25 mg.L-1,预培养时间为3 d,侵染时间为20 min,共培养时间为3 d,乙酰丁香酮的浓度控制在100 mg.L-1时可以有效的提高遗传转化效率。在此基础上对获得的转基因植株进行分子检测,初步表明外源基因codA已经整合到麻竹基因组中。 The temperature is one of the critical environmental factor affecting plant survival,growth and development.Low temperature injury phenomenon is highlighted particularly,involving almost all the economic plants.Most plants are highly sensitive to low temperature.Therefore,the improvement of plant resistance to low temperature stress can significantly enlarge growth region and increase yield.CodA gene can increase the tolerance of plants to low temperature stress,and Rd29A is a stress-induced specific expression promoter,stress conditions may rapidly induce gene expression,and may also reduce the adverse effects of transgenic overexpression.The research explored the main factors affecting the callus genetic transformation efficiency of Dendrocalamus latiflorus using bamboo anther culture callus as material through Agrobacterium-mediated method.The results showed that 25 mg·L-1 hygromy,3d pre incubation,20min infection,3d total culture time,and 100 mg·L-1 acetyl eugenol can effectively improve the efficiency of genetic transformation.Molecular detection of obtained transgenic plants preliminarily showed that exogenous codA gene had been integrated into the genome of Dendrocalamus latiflorus.
出处 《竹子研究汇刊》 北大核心 2012年第1期1-6,14,共7页 Journal of Bamboo Research
基金 浙江省科技厅重大专项(2010C12010) 国家自然科学基金项目(30972340)资助
关键词 麻竹 农杆菌介导 codA基因 Rd29A基因 Bamboo Agrobacterium codA gene Rd29A gene
  • 相关文献

参考文献28

  • 1Bajaj S, Targolli J, Liu L F, et al. Transgeneie approaches to inerease dehydration stress tolerance in plants [ J ]. Molecular Breeding, 1999, 5 : 493 - 503. 被引量:1
  • 2Csonka, L.N. Physiological and genetic: responses of bacteria to osmotic stress [J]. Microbiol. Rev. 1989,53:121 - 147. 被引量:1
  • 3Coughlan S. J. and Heber U. The role of glycinebetaine in the protection of spinach thylakoids against freezing stress [J]. Planta, 1982,156:62-69. 被引量:1
  • 4Sakamoto A, Alia, Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt andeoht [J]. Plant MolBio, 1998, 38:1011 -1019. 被引量:1
  • 5Wang et al. Xu et al. Transgenie Brnssica chinensis plants expressing a bacterial codA gene exhibit enhaneed toleranee to extreme temperature and high salinity [ J ]. Zhejiang Univ-Sei B ( Biomed & Biotechnol) 2010, 11 ( 11 ) :851 - 861. 被引量:1
  • 6Goel D, Singh AK, Yadav V. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses [ J]. Plant Physiol, 2011, 168 ( 11 ) : 1286 - 1294. Epub 2011 Feb 20. 被引量:1
  • 7Gorham J. Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove RM, editor. Amino Acids and Their Derivatives in Higher Plaints [ J ]. Cambridge: Cambridge University Press ; 1995. pp. 171 - 203. 被引量:1
  • 8Hayashi H, Alia, Mustardy L, Deshnium P, ida M, Murata N. Transtormation of Arabidopsis thaliana with the coda gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress [J]. Plant J. 1997, 12 (1):133-142. 被引量:1
  • 9Holmherg N, Bulow L. Advance on higher plant ahintic tolerance through gene transformation [ J ]. Trend in Plant Science, 1998, 3(2) :61 -66. 被引量:1
  • 10Gheysen G, Van-mdntagu M, Zambryski P. Inte-gration of Agrobacterium tumefaciens transter DNA (T-DNA) involves rearrangements of target plant DNA sequences [ J ]. Proc Natl Aead Sci USA, 1987, 84(17) :6169 -6173. 被引量:1

二级参考文献187

共引文献245

同被引文献181

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部