期刊文献+

基于小波多分辨率分析的掌纹分割算法研究 被引量:1

Research on Segmentation Algorithm of Palm Based on Wavelet Multi-Resolution Analysis
下载PDF
导出
摘要 由于复杂掌纹纹线存在难以分割和有效性较低的问题,该文采用小波多分辨率分析方法构建掌纹分割算法,算法首先利用小波多分辨率对高频子图的候选子区域进行分析,将获得的相似掌纹纹线集合加以合并,并对合并相似区域的集合和二值化集合求交集得到融合图像,最后利用区域生长法和形态学去噪获得掌纹主要纹理特征. In order to solve the difficulty and low effectiveness of palm print segmentation,this paper proposes a new segmentation algorithm of palm based on wavelet multi-resolution analysis.Based on wavelet multi-resolution analysis of palm image high frequency candidates for the subregion,this method gets similar palm print set,and then incorporates dynamic threshold segmentation set and similar palm print set to locate palm print region.Finally the palm characteristic could get from denoise process such as regional growth and morphological thinning method.
作者 李莉
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2012年第1期117-121,共5页 Natural Science Journal of Xiangtan University
关键词 复杂掌纹 小波多分辨率分析 分割算法 区域生长法 complex palm multi-resolution analysis segmentation algorithm regional growth
  • 相关文献

参考文献18

二级参考文献72

共引文献94

同被引文献16

  • 1DUFFIN R J, SCHAEFFER A C. A class of nonharmonic Fourier series [J]. Trans Am Math Soc, 1952,72(2) :341-366. 被引量:1
  • 2DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions [ J ]. J Math Phys, 1986,27 ( 5 ) : 1271-1283. 被引量:1
  • 3CHRISTENSEN O. An introduction to frames and Riesz bases [ M]. Boston: Birkhauser, 2003. 被引量:1
  • 4SUN W C. G-frames and g-Riesz bases [J]. J Math Anal Appl, 2006,322(1) :437-452. 被引量:1
  • 5FRANK M, LARSON D R. Frames in Hilbert C" -modules and C*-algebras[J]. J Operator Theory, 2002,48(2) :273-314. 被引量:1
  • 6KHOSRAVI A, KHOSRAVI B. Fusion frames and g-frames in Hilbert C'-modules [ J ]. Int J Wavelets Multiresolut Inf Process, 2008,6 (3) :433-466. 被引量:1
  • 7XIAO X C, ZENG X M. Some properties of g-frames in Hilbert *-modules [J]. J Math Anal Appl, 2010,363(2) :399-408. 被引量:1
  • 8FAVIER S, ZALIK R. On the stability of frames and Riesz bases [J]. Appl Comput Harmon Anal, 1995,2(2) :160-173. 被引量:1
  • 9CHRISTENSEN O. Perturbation of operators and applications to frame theory [ J]. J Fourier Anal Appl, 1997,3(5) :543-557. 被引量:1
  • 10FEICHTINGER H G, SUN W C. Stability of Gabor frames with arbitrary sampling points [J]. Acta Math Hungar, 2006,113 (3) :187-212. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部