期刊文献+

三维特征点距离特征集合求交匹配算法 被引量:5

Distance feature set intersection for 3D feature matching
下载PDF
导出
摘要 对于使用锥束CT分区成像的物体,要得到其完整的三维图像,需要对各分区重建图像进行三维拼接。作为基于特征的三维拼接算法中重要的步骤之一,特征点匹配是要对图像重叠区域中检测到的特征点建立对应关系。针对目前三维SIFT特征匹配算法对于相似特征误匹配率较高的问题,提出基于三维特征点空间关系的三维特征点匹配算法:距离特征集合求交法。该算法使用求取简便的特征点三维距离特征作为特征描述符,避免了扩大特征信息统计范围时巨大的计算消耗问题,然后在匹配过程中设计了距离特征集合求交的相似性度量方法,解决了以往基于空间关系方法中特征矢量各项元素不对应的问题。实验证明:该算法在图像存在大量相似特征的前提下,能够有效提高三维特征点匹配的匹配正确率。 To get the entire three-dimensional (3D) image of the object scanned separately by cone beam computed tomography (CBCT), it needed to process the reconstructed image of each region by 3D image mosaicing. As an important step of the mosaicing approach based on feature point, feature point matching buildt the one-to-one relationships between the points detected in the overlap regions. Aiming at the mismatch problem that caused by similar features in the feature matching process of SIFT, a 3D feature point matching method was presented based on spatial relations called Distance Feature Set Intersection (DFSI). This method firstly used easy-calculating 3D distance features to form descriptors, which avoided the large computation cost by expanding the statistical range. Then, distance feature set intersection was devised as the similarity measure, which solved the problem of feature vector elements not corresponding in previous method based on spatial relations. The experimental results show that the proposed approach improves the matching accuracy when images have multiple similar regions.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第8期2728-2732,共5页 Infrared and Laser Engineering
关键词 图像拼接 特征匹配 距离特征集合求交 相似特征 image mosaicing feature matching distance feature set intersection similar feature
  • 相关文献

参考文献11

二级参考文献51

  • 1林诚凯,李惠,潘金贵.一种全景图生成的改进算法[J].计算机工程与应用,2004,40(35):69-71. 被引量:7
  • 2袁贞明,吴飞,庄越挺.基于视觉特征的多传感器图像配准[J].中国图象图形学报,2005,10(6):767-772. 被引量:4
  • 3丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 4王国美,陈孝威.SIFT特征匹配算法研究[J].盐城工学院学报(自然科学版),2007,20(2):1-5. 被引量:24
  • 5Harris C, Stephens M. A combined corner and edge detector [C] //Proceedings of the Alvey Vision Conference, Manchester, 1988:147-151. 被引量:1
  • 6Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors [J]. International Journal of Computer Vision, 2004, 60(1): 63 86. 被引量:1
  • 7Yi S, Labate D, Easley G R, et al. A shearlet approach to edge analysis and detection [J]. IEEE Transactions on Image Processing, 2009, 18(5): 929-941. 被引量:1
  • 8Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features [C] // Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:1458-1465. 被引量:1
  • 9Bhowmick P, Pradhan R K, Bhattacharya B B. Approximate matching of digital point sets using a novel angular tree [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5): 769-782. 被引量:1
  • 10Bai X, Sapiro G. Geodesic matting: a framework for fast interactive image and video segmentation and matting [J]. International Journal of Computer Vision, 2009, 82(2); 113- 132. 被引量:1

共引文献109

同被引文献41

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部