期刊文献+

二阶奇异耦合微分方程组Neumann边值问题的解 被引量:2

Solutions to Neumann Boundary Value Problems of Second Order Singular Coupled Systems
下载PDF
导出
摘要 利用Schauder不动点定理研究二阶非自治半正的耦合微分方程组Neumann边值问题正解的存在性.在扰动项积分值符号同正、同负和异号的情况下,分别获得了该奇异耦合微分方程组Neumann边值问题存在正解的条件. Using Schauder's fixed point theorem,the authors studied Neumann boundary value problems of second order non-autonomous semipositive coupled systems.We established the existence of positive solutions for Neumann boundary value problems of the singular coupled systems under the conditions that the signs of integral disturbance terms are positive,or negative,or different.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期433-438,共6页 Journal of Jilin University:Science Edition
基金 黑龙江省自然科学基金(批准号:A201012) 黑龙江省教育厅科研项目(批准号:11553067) 黑龙江省高校青年学术骨干项目(批准号:1252G035)
关键词 NEUMANN边值问题 奇异耦合方程组 正解 SCHAUDER不动点定理 Neumann boundary value problem singular coupled system positive solution Schauder's fixed point theorem
  • 相关文献

参考文献14

  • 1JIANG Da-qing, LIU He. Existence of Positive Solutions to Second Order Neumann Boundary Value Problem [ J ]. J Math Res Expos, 2000, 20(3) : 360-364. 被引量:1
  • 2SUN Jian-ping, LI Wan-tong. Multiple Positive Solutions to Second Order Neumann Boundary Value Problems [ J]. Appl Math Comput, 2003, 146(1) : 187-194. 被引量:1
  • 3CHU Ji-feng, SUN Yi-gang, CHEN Hao. Positive Solutions of Neumann Problems with Singularities [ J ]. J Math Anal Appl, 2008, 337(2): 1267-1272. 被引量:1
  • 4Cabada A, Habets P, Lois S. Monotone Method for the Neumann Problem with Lower and Upper Solutions in the Reverse Order [J]. Appl Math Comput, 2001, 117(1): 1-14. 被引量:1
  • 5Bensedik A, Bouchekif M. Symmetry and Uniqueness of Positive Solutions for a Neumann Boundary Value Problem [ J 1. Appl Math Letters, 2007, 20(4) : 419-426. 被引量:1
  • 6LI Fu-yi, ZHANG Yan-bin, LI Yu-hua. Sign-Changing Solutions on a Kind of Fourth-Order Neumann Boundary Value Problem [J]. J Math Anal Appl, 2008, 344(1) : 417-428. 被引量:1
  • 7YUAN Cheng-jun. Multiple Positive Solutions for (n - 1,1 )-Type Conjugate Boundary Value Problems of Nonlinear Singular Fractional Differential Equations [J]. Electronic Journal of Qualitative Theory of Diff Equ, 2010, 36 : 804-812. 被引量:1
  • 8YUAN Cheng-jun, JIANG Da-qing, XU Xiao-jie. Singular Positone and Semipositone Boundary Value Problems of Nonlinear Fractional Differential Equations [ J/OL]. 2009. http://www, emis. de/journals/itOA/MPE/Volume2009/ 535209. pdf. 被引量:1
  • 9文香丹,苑成军.奇异非线性二阶三点连续和离散边值问题解的存在惟一性[J].吉林大学学报(理学版),2009,47(3):461-468. 被引量:5
  • 10文香丹,苑成军,徐艳华.一类有脉冲一阶泛函微分方程的正周期解[J].吉林大学学报(理学版),2008,46(6):1073-1080. 被引量:6

二级参考文献26

  • 1高海音,李晓月,林晓宁,蒋达清.二阶奇异非线性微分方程周期边值问题解的存在性和多重性[J].吉林大学学报(理学版),2005,43(4):411-416. 被引量:9
  • 2翁世有,高海音,张晓颖,蒋达清.一维p-Laplacian奇异边值问题的存在性原则[J].吉林大学学报(理学版),2006,44(3):351-356. 被引量:4
  • 3Kuang Y. Global Stablity for a Class of Nonlinear Nonautonomous Delay Equations [ J]. Nonlinear Analysis, 1991, 17(7) : 627-634. 被引量:1
  • 4Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics [ M ]. Boston: Kluwer Academic Publishers, 1992. 被引量:1
  • 5JIANG Da-qing, WEI Jun-jie, ZHANG Bo. Positive Periodic Solutions of Functional Differential Equations and Population Models [ J]. Electronic Journal of Differential Equations, 2002, 2002(71 ) : 1-13. 被引量:1
  • 6ZHEN Jin, MA Zhi-en, HAN Mao-an. The Existence of Periodic Solutions of the n-Species Lotka-Voherra Competition Systems with Impulsive [J]. Chaos, Solitons and Fractals, 2004, 22( 1 ) : 151-188. 被引量:1
  • 7ZHANG Wei-ping, FAN Meng. Periodicity in a Generalized Ecological Competition System Governed by Impulsive Differential Equations with Delays [ J ]. Mathematical and Computer Modelling, 2004, 39(4/5) : 479-493. 被引量:1
  • 8Lenhart S M, Travis C C. Global Stability of a Biological Model with Time Delay [J]. Proc Amer Math Soc, 1986, 96( 1 ) : 75-78. 被引量:1
  • 9LI Xiao-yue, ZHANG Xiao-ying, JIANG Da-qing. A New Existence Theory for Positive Periodic Solutions to Functional Differential Equations with Impulse Effects [ J]. Computers and Mathematics with Applications, 2006, 51(12): 1761-1772. 被引量:1
  • 10LI Xiao-yue, LIN Xiao-ning, JIANG Da-qing, et al. Existence and Multiplicity of Positive Periodic Solutions to Functional Differential Equations with Impulse Effects [ J ]. Nonlinear Analysis, 2005, 62 (4) : 683-701. 被引量:1

共引文献9

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部