期刊文献+

一类多时滞脉冲微分方程的正周期解

Positive Periodic Solutions to a Kind of Impulsive Differential Equations with Delays
下载PDF
导出
摘要 研究了一类含有多个时滞的脉冲微分方程.在系数变号的情形下,利用锥上的不动点定理获得了其正ω-周期解的存在性结果,并讨论了生态数学中所提出的几类时滞脉冲微分方程模型. A kind of impulsive differential equations with delays are studied,and positive periodic solutions are obtained by applying fixed point theorems on cone under the condition of coefficient changing sign.And impulsive differential equations applied to biological system are also discussed.
作者 陈鹏玉
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期15-19,共5页 Journal of Henan Normal University(Natural Science Edition)
关键词 正周期解 脉冲 不动点定理 positive periodic solution impulse fixed point theorem cone
  • 相关文献

参考文献6

二级参考文献18

  • 1高海音,李晓月,林晓宁,蒋达清.二阶奇异非线性微分方程周期边值问题解的存在性和多重性[J].吉林大学学报(理学版),2005,43(4):411-416. 被引量:9
  • 2翁世有,高海音,张晓颖,蒋达清.一维p-Laplacian奇异边值问题的存在性原则[J].吉林大学学报(理学版),2006,44(3):351-356. 被引量:4
  • 3Kuang Y. Global Stablity for a Class of Nonlinear Nonautonomous Delay Equations [ J]. Nonlinear Analysis, 1991, 17(7) : 627-634. 被引量:1
  • 4Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics [ M ]. Boston: Kluwer Academic Publishers, 1992. 被引量:1
  • 5JIANG Da-qing, WEI Jun-jie, ZHANG Bo. Positive Periodic Solutions of Functional Differential Equations and Population Models [ J]. Electronic Journal of Differential Equations, 2002, 2002(71 ) : 1-13. 被引量:1
  • 6ZHEN Jin, MA Zhi-en, HAN Mao-an. The Existence of Periodic Solutions of the n-Species Lotka-Voherra Competition Systems with Impulsive [J]. Chaos, Solitons and Fractals, 2004, 22( 1 ) : 151-188. 被引量:1
  • 7ZHANG Wei-ping, FAN Meng. Periodicity in a Generalized Ecological Competition System Governed by Impulsive Differential Equations with Delays [ J ]. Mathematical and Computer Modelling, 2004, 39(4/5) : 479-493. 被引量:1
  • 8Lenhart S M, Travis C C. Global Stability of a Biological Model with Time Delay [J]. Proc Amer Math Soc, 1986, 96( 1 ) : 75-78. 被引量:1
  • 9LI Xiao-yue, ZHANG Xiao-ying, JIANG Da-qing. A New Existence Theory for Positive Periodic Solutions to Functional Differential Equations with Impulse Effects [ J]. Computers and Mathematics with Applications, 2006, 51(12): 1761-1772. 被引量:1
  • 10LI Xiao-yue, LIN Xiao-ning, JIANG Da-qing, et al. Existence and Multiplicity of Positive Periodic Solutions to Functional Differential Equations with Impulse Effects [ J ]. Nonlinear Analysis, 2005, 62 (4) : 683-701. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部