期刊文献+

基于密度估计的社会网络特征簇挖掘方法 被引量:9

Mining characteristic clusters: a density estimation approach
下载PDF
导出
摘要 通过凝聚式聚类方法抽取网络的层次结构,并基于拓扑结构分析,给出了社会网络的标注密度估计函数。通过对密度估计函数在网络层次结构上的聚合操作,计算聚簇的特征性指标,从而达到发现特征聚簇的目的。在大规模的真实数据上对这些方法和模型进行了验证,实验结果表明,所提出的思路和模型是合理的,算法是高效、可伸缩的。 A hierarchical structure extraction approach based on agglomerative clustering was proposed, and a density estimation based on topological structure was designed. By conducting the hierarchical aggregation on layers of hierarchical structure, the characteristic of clusters could be measured. The empirical study conducted on a large real data set indicates that the model and measures are interesting and meaningful, and the algorithms are effective and efficient in practice.
出处 《通信学报》 EI CSCD 北大核心 2012年第5期38-48,共11页 Journal on Communications
基金 国家自然科学基金资助项目(60933005 60873204) 国家高技术研究发展计划("863"计划)基金资助项目(2010AA012505)~~
关键词 社会网络 特征簇 数据挖掘 social network characteristic clusters data mining
  • 相关文献

参考文献23

  • 1NEWMAN M E J, WATTS D J, STROGATZ S H. Random graph models of social networks[A]. Proceedings of the National Academy of Sciences of the United States[C]. America, 2002.2566. 被引量:1
  • 2ZHOU D, ORSHANSKIY S A, ZHA H Y, et al. Co-ranking authors and documents in a heterogeneous network[A]. Proceedings of the 2007 IEEE International Conference on Data Mining (ICDM'07)[C]. 2007. 739-744. 被引量:1
  • 3PAGE L, BRIN S, MOTWANI R, et al. The Pagerank Citation Rank- ing: Bringing Order to the Web[R]. Stanford University, 1998. 被引量:1
  • 4YAN X F, HAN J W. Gspan: graph-based substructure pattern min- ing[A]. Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02)[C]. 2002. 721. 被引量:1
  • 5ZHOU Y, CHENG H, YU J X. Graph clustering based on struc- tural/attribute similarities[J]. PVLDB, 2009, 2(1):718-729. 被引量:1
  • 6HANNEMAN R A, RIDDLE M. Introduction to Social Network Methods[M]. University of California, Riverside, 2005. 被引量:1
  • 7DOURISBOURE Y, GERACI F, PELLEGR1NI M. Extraction and classification of dense communities in the Web[A]. WWW[C]. 2007. 461-470. 被引量:1
  • 8ZENG Z P, WANG J Y, ZHOU L Z, et al. Coherent closed quasi-clique discovery from large dense graph databases[A]. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discov- ery and Data Mining, KDD '06[C]. New York, NY, USA, 2006. 797-802. 被引量:1
  • 9KARP R M. Reducibility among combinatorial problems[A]. Com- plexity of Computer Computations[C]. New york, 1972. 被引量:1
  • 10KUMAR R, NOVAK J, TOMKINS A. Structure and evolution of online social networks[A]. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06)[C]. 2006. 611- 617. 被引量:1

二级参考文献18

  • 1Albert R, Barabasi A-L. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002, 74(1): 47-97 被引量:1
  • 2Newman M E J. The structure and function of complex networks. SIAM Review, 2003, 45(2): 167-256 被引量:1
  • 3Newman M E J. Detecting community structure in networks. European Physical Journal B, 2004, 38(2): 321-330 被引量:1
  • 4Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. Journal of Statistical Mechanics, 2005, P09008 被引量:1
  • 5Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 1970, 49 (2): 291-307 被引量:1
  • 6Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community, structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818 被引量:1
  • 7Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69 (2): 026113 被引量:1
  • 8Fortunato S, Latora V, Marchiori M. A method to find community structures based on information centrality. Physical Review E, 2004, 70(5): 056104 被引量:1
  • 9Pons P, Latapy M. Computing communities in large networks using random walks//Proceedings of the 20th International Symposium on Computer and Information Sciences. Lecture Notes in Computer Science 3733. Springer, New York, 2005:284-293 被引量:1
  • 10Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 2006, 74(3) : 036104 被引量:1

共引文献26

同被引文献135

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部