期刊文献+

基于信息熵的复杂网络社团划分建模和验证 被引量:15

Modularity Modeling and Evaluation in Community Detecting of Complex Network Based on Information Entropy
下载PDF
导出
摘要 社团结构是复杂网络最普遍和最重要的拓扑属性之一,社团结构的划分方法对分析复杂网络相关统计特性具有十分重要的理论意义.为了提高社团划分精度,提出了一种新的基于信息熵(information entropy)模块度的社团划分算法(简称IE算法).在有着确定社团结构的数据集和不确定社团结构的数据集上,通过选取Q值、社团划分个数、社团最大连通分量大小和强弱社团个数比例4个重要参数,将IE算法与两种最主要的基于模块度的划分算法GN(Girvan-Newman)和FastGN(Fast Girvan-Newman)进行对比,实验结果证明了IE算法在社团划分性能上优于GN和FastGN;将IE和其他7种最主要的经典社团算法进行时间复杂度分析,并在随机网络和真实网络上进行实验,结果表明该算法时间复杂度在GN与FastGN之间,时间复杂度小于GN而精确度优于GN,证明了在大多数数据集上IE算法的社团划分准确度优于传统基于点边比率的社团划分算法的准确度. Community structure is the most basic and important topologic characteristic of complex network and community detection method is therefore significant to its character statistics.A new theoretic model of modularity Q based on information entropy(IE) with low complexity and better accuracy is proposed to promote clustering accuracy.IE algorithm reaches better community detecting results than GN and FastGN algorithm on network with definite community structure and unidentified community structure,while computation complexity declines.The simulation results mentioned above show that IE will find more accurate community structure than traditional methods of edge rate on most classic complex network dataset.According to simulation result compared with the seven main classic community detecting methods on simulated random networks and real networks,information entropy based modularity is more accurate than traditional modularity of edge rate.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第4期725-734,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60905025 90924029 61074128)
关键词 信息熵 复杂网络 社团结构 模块度 社团划分 information entropy complex network community structure modularity community detection
  • 相关文献

参考文献21

  • 1Palla G,Derényi I,Farkas I T. Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005.814-818. 被引量:1
  • 2Newman M E J. Finding community structure in networks using the eigenvectors of matrices[J].Physical Review E,2006,(74). 被引量:1
  • 3Shiga M,Takigawa I,Mamitsuka H. A spectral clustering approach to optimally combining numerical.vectors with a modular network[A].New York:ACM,2007.647-656. 被引量:1
  • 4Newman M E J. Detecting community structure in networks[J].the European Physical Journal B,2004,(02):321-330. 被引量:1
  • 5Newman M E J. Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,(69).doi:10.1103/PhysRevE.69.066133. 被引量:1
  • 6Lusseau D,Schneider K,Boisseau O J. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations[J].Behavioral Ecology and Sociobiology,2003.396-405.doi:10.1007/s00265-003-0651-y. 被引量:1
  • 7Rosvall M,Bergstrom C T. An information-theoretic framework for resolving community structure in complex networks[A].Washington:Stanford University's Highwire Press,2007.7327-7331. 被引量:1
  • 8Kleinberg J M. Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,(05):604-632.doi:10.1145/324133.324140. 被引量:1
  • 9Yang B,Cheung W K,Liu J. Community mining from signed social networks[J].IEEE Transactions on Knowledge and Data Engineering,2007,(10):1333-1348. 被引量:1
  • 10杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:208

二级参考文献90

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442. 被引量:1
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512. 被引量:1
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a. 被引量:1
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382. 被引量:1
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826. 被引量:1
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900. 被引量:1
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818. 被引量:1
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248. 被引量:1
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663. 被引量:1
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667. 被引量:1

共引文献235

同被引文献136

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部