期刊文献+

基于变尺度PCA的电力设备载流故障早期预警 被引量:18

Early warning of electric equipment current-carrying faults based on variable-scale principal component analysis
下载PDF
导出
摘要 针对载流故障的时域多样性,提出基于变尺度主成分分析(PCA)的载流故障早期预警方法。首先构造即时温度序列和多种时间尺度的平均温度序列,然后对各温度序列分别进行主成分分析以提取故障的早期特征,并采用K-means算法对异常温度点进行聚类分析以实现故障定位。实验结果表明,该方法能有效地进行载流故障诊断,并使故障的预警时间比常规的温度阈值法显著提前。 A variable-scale PCA(Principal Component Analysis) based current-carrying fault early warning approach is proposed with respect to its variability in time domain.The real-time temperature series and the moving average temperature series in various time scales are constructed,PCA is applied to each series to detect the early features,and K-means algorithm is then employed in clustering analysis for the abnormal temperature sites to locate the faults.Experiment results show that the proposed method can effectively diagnose the current-carrying faults much earlier than conventional temperature-threshold method.
出处 《电力自动化设备》 EI CSCD 北大核心 2012年第5期147-151,共5页 Electric Power Automation Equipment
关键词 电力设备 主成分分析 K-MEANS 尺度 载流故障 早期预警 故障检测 监测 故障定位 electric equipments principal component analysis K-means scale current-carrying fault early warning fault detection monitoring electric fault location
  • 相关文献

参考文献15

二级参考文献42

共引文献170

同被引文献196

引证文献18

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部