期刊文献+

基于混合粒子滤波的电力设备载流故障预测 被引量:11

Current-carrying fault prediction of electric equipment based on hybrid particle filtering
下载PDF
导出
摘要 为有效预防设备载流故障,提高设备稳定运行能力和延长使用寿命,提出基于混合粒子滤波的滚动式电力设备载流故障趋势预测方法。首先,借助传热学理论,分析电力设备触点在载流故障状态下的温度变化,建立触点温升模型;然后,利用降维思想,根据温升模型给定参数估计方程,初始化温升模型参数。最后,基于在线更新的温度,利用粒子滤波修正模型参数,滚动式优化温度预测曲线,实现载流故障发展趋势的精确预测。基于某电站实际温度数据的验证表明,所提方法能够快速精准地预测载流故障的发展趋势,有效保护电力系统安全运行。 In order to effectively predict current carrying fault of electric equipment, enhance equipment operation sta- bility,and prolong equipment service life time, this paper proposes a current-carrying fault trend rolling prediction method based on hybrid particle filtering. Firstly, under the guidance of heat transfer theory, the temperature change of electric equipment contacts under current-carrying fault condition is analyzed and the temperature rising model of the contacts is built. Then, with the idea of dimension reduction, the parameters of the temperature rising model are initial- ized based on the parameter estimation equation. At last ,based on the real-time data ,particle filtering is used to update the parameters of the temperature rising model, and the temperature prediction curve is optimized. The above method was verified with the actual temperature data of a certain power station, and the result shows that the method can pre- dict the development trend of current-carrvin~ fault accurately and protect the safetv of the nower svstem effectiwlv_
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第6期1421-1427,共7页 Chinese Journal of Scientific Instrument
关键词 载流故障 传热学理论 温升模型 降维 粒子滤波 趋势预测 current-carrying fault heat transfer theory temperature rising model dimension reduction particle filter trend forecast
  • 相关文献

参考文献18

二级参考文献99

共引文献127

同被引文献145

引证文献11

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部