期刊文献+

一种基于短时能量和高阶差分的端点检测方法 被引量:4

AN END POINT DETECTION METHOD BASED ON SHORT TERM ENERGY AND HIGH ORDER DIFFERENCE
下载PDF
导出
摘要 语音信号处理的速度和结果很大程度上受到端点检测的影响.传统的短时能量和过零率相结合的端点检测算法在低噪声环境下,可以获得满意的检测效果.然而,在高噪声的环境下,甚至难以有效检测语音信号.研究表明,高阶差分结合短时能量的新方法在低噪声环境下,可获得与传统方法相似的效果,而在高噪声下,则明显优于传统方法. End point detection strongly influences the speed and result of speech signal processing. Traditional methods based on short term energy and zero crossing can obtain satisfactory results under high signal noise ratio conditions, but can not detect speech signal effectively under low noise ratio condition. Research showed that the new method based on high order difference and short term energy can obtain similar results like traditional methods under high signal noise ratio, but outperforms traditional methods under low signal noise ratio.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期146-148,共3页 Journal of Beijing Normal University(Natural Science)
关键词 端点检测 短时能量 高阶差分 低信噪比 end point detection short term energy high order difference low signal noise ratio
  • 相关文献

参考文献4

二级参考文献3

共引文献34

同被引文献29

  • 1王世虎.硬目标侵彻中的加速度信号研究[D].北京:北京理工大学,2011. 被引量:1
  • 2Lundgren. A Strain Gage Based Projectile Health Monitor and Salvage Indicating Circuit for Kinetic Energy Penetrat- ing Projectiles[ C ]//53th NDIA Fuze Confence, 2009. 被引量:1
  • 3Lundgren. Signal Processing Means for Detecting and Dis- criminating Between Structural Configurations and Geologi- cal Gradients Encountered by Kinetic Energy Penetrating Projectiles[ C ]//52nd NDIA Fuze Conference, 2008. 被引量:1
  • 4葛哲学,陈仲生.Matlab时频分析技术及其应用[M].北京:北京邮电出版社,2006:70-78. 被引量:1
  • 5王成华,陈佩银,徐孝诚.侵彻过载实测数据的滤波及弹体侵彻刚体过载的确定[J].爆炸与冲击,2007,27(5):416-419. 被引量:32
  • 6Li Q,Zheng J S, Tsai A, et al. Robust endpoint detection and energy normalization for real-time speech and speaker recog- nition [ J ]. IEEE Transactions on Acoustic, Speeeh and Audio Processing,2002,10 ( 3 ) : 146 - 157. 被引量:1
  • 7Madhu N. Note on measures for spectral flatness [ J ]. Elec- tronics Letters ,2009,45 ( 23 ) : 1195 - 1196. 被引量:1
  • 8Gajie B ,Paliwal K K. Robust speech recognition in noisy en- vironments based on subband spectral centroid histograms [J]. IEEE Transactions on Audio, Speech, and Language Processing,2006,14 (2) :600 - 608. 被引量:1
  • 9Yi K CH, Tian B, Fu Q. Speech signal processing [ M ]. Bei- jing : National Defence Industry Press ,2000. 被引量:1
  • 10Ghosh P K, Tsiartas A, Narayanan S. Robust voice activity detection using long- term signal variability [ J ]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(3) : 600 -613. 被引量:1

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部