期刊文献+

基于多面化分解模型的目标信息获取优化技术 被引量:2

Optimization of Target Information Acquisition Technology Based on Multi-Side Decomposition Model
下载PDF
导出
摘要 为了能够通过观测角度设置的优化选择,实现目标信息获取技术的优化,以最少的观测点数获取最大化的信息量,提出了一种基于多面化分解的目标信息量描述模型,用于分析图像传感器在不同观测角度下的目标信息获取量.该模型以各面信息获取量组合向量的形式来描述多面化分解的目标在某观测角度下的信息获取量,采用改进的蜂群算法来搜索最佳的观测角度,实现最大化的信息获取.针对无人机多时相观测时的目标信息获取优化问题,采用文中方法进行观测角规划仿真实验.结果表明:经文中方法优化后,信息获取量平均提高了58.5%;文中方法可对有一定观测角约束条件的情况进行高效规划,实现最大化的信息获取. In order to optimize the target information acquisition technology by prudently selecting observing angles and to collect maximum information with the fewest observing points,a multi-side decomposition-based information content description model is proposed,which is used to measure the target information collected by optical image sensors at different observing angles.The main idea of this model is that,to estimate the information collected at different observing angles,the target is decomposed into multiple sides,and its information is described by the combined vector of the information collected from all sides.Moreover,the modified bee colony algorithm is utilized to search the optimal observing angle and to further obtain the maximum information content.The proposed method is then applied to the planning simulation of observing angles in the target information acquisition of an unmanned aerial vehicle with multi-temporal and relative observation.Experimental results show that the proposed optimization method improves the average information acquisition by 58.5%,and that it helps to perform efficient planning with maximum information acquisition when observing angles are limited.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期100-105,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"863"计划项目(2010AA0748)
关键词 信息分析 目标多面化分解 蜂群算法 无人机 information analysis multi-side target decomposition bee colony algorithm unmanned aerial vehicles
  • 相关文献

参考文献12

  • 1Dasgupta Prithviraj.A multiagent swarming system for dis-tributed automatic target recognition using unmanned aerialvehicles[J].IEEE Transactions on Systems,Man,andCybernetics-Part A:Systems and Humans,2008,38(3):549-563. 被引量:1
  • 2Karantzalos Konstantinos,Paragios Nikos.Recognition-driventwo-dimensional competing priors toward automatic andaccurate building detection[J].IEEE Transactions on Geo-science and Remote Sensing,2009,47(1):133-144. 被引量:1
  • 3Laliberte Andrea S,Rango Albert.Texture and scale inobject-based analysis of subdecimeter resolution un-manned aerial vehicle(UAV)imagery[J].IEEE Tran-sactions on Geoscience and Remote Sensing,2009,47(3):761-770. 被引量:1
  • 4Kim Jongrae,Crassidis John L.UAV path planning formaximum visibility of ground targets in an urban area[C]∥Proceedings of the 13th Conference on InformationFusion.Edinburgh:IEEE,2010:1-7. 被引量:1
  • 5Gans N R,Shen J,Curtis J W.Selection of a UAV orbit tokeep multiple targets in the camera field of view[C]∥Proceedings of IEEE International Symposium on Intelli-gent Control.Yokohama:IEEE,2010:807-812. 被引量:1
  • 6Li Wei,Zhang Wei.Path planning of UAVs swarm usingant colony system[C]∥Proceedings of the Fifth Interna-tional Conference on Natural Computation.Tianjin:IEEE,2009:288-292. 被引量:1
  • 7Chen Huiying,Li Youfu.Dynamic view planning by effec-tive particles for three-dimensional tracking[J].IEEETransactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2009,39(1):242-253. 被引量:1
  • 8Ding Xu Chu,Rahmani Amir R,Egerstedt Magnus.Multi-UAV convoy protection:an optimal approach to path plan-ning and coordination[J].IEEE Transactions on Robi-tics,2010,26(2):256-268. 被引量:1
  • 9Vasquez-Gomez Juan Irving,Lopez-Damian Efrain,SucarLuis Enrique.View planning for 3D object reconstruction[C]∥Proceedings of IEEE/RSJ International Conferenceon Intelligent Robots and Systems.St.Louis:IEEE,2009:4015-4020. 被引量:1
  • 10Karaboga D,Basturk B.On the performance of artificialbee colony(ABC)algorithm[J].Applied Soft Com-puting,2008,8(1):687-697. 被引量:1

同被引文献20

  • 1林洪桦.测量误差与不确定度评估[M].北京:机械工业出版社,2009. 被引量:15
  • 2Tseng H Y.A genetic algorithm for assessing flatness in automated manufacturing systems[J].Journal of Intelligent Manufacturing,2006,17 (3):301-306. 被引量:1
  • 3Rossi A,Antonetti M,Barloscio M,et al.Fast genetic algorithm for roundness evaluation by the minimum zone tolerance (MZT) method[J].Measurement,2011,44 (7):1243-1252. 被引量:1
  • 4Wen X,Zhu X,Zhao Y,et al.Flatness error evaluation and verification based on new generation geometrical product specification (GPS)[J].Precision Engineering,2012,36(1):70-76. 被引量:1
  • 5Kovvur Y,Ramaswami H,Anand R B,et al.Minimum zone form tolerance evaluation using particle swarm optimization[J].International Journal of Intelligent Systems Technologies and Applications,2008,4(1/2):79-96. 被引量:1
  • 6Sun T.Applying particle swarm optimization algorithm to roundness measurement[J].Expert Systems with Applications,2009,36 (2):3428-3438. 被引量:1
  • 7刘桂雄,姜焰鸣.一种基于支持向量回归的多测点平面度评定方法:中国,201110311170[P].2012-05-09. 被引量:1
  • 8Jones M C.Kumaraswamy's distribution:a beta-type distribution with some tractability advantages[J].Statistical Methodology,2009,6(1):70-81. 被引量:1
  • 9Olea R A.On the use of the beta distribution in probabilistic resource assessments[J].Natural Resources Research,2011,20 (4):377-388. 被引量:1
  • 10Karaboga D,Basturk B.On the performance of artificial bee colony (ABC) algorithm[J].Applied Soft Computing,2008,8 (1):687-697. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部