期刊文献+

张量积形式的三维延拓Kantorovich法 被引量:3

THREE-DIMENSIONAL EXTENDED KANTOROVICH METHOD OF TENSOR PRODUCT FORM
原文传递
导出
摘要 该文采用张量积的试函数逼近形式,即Tu(x,y,z){X(x)}[Z(z)]{Y(y)},成功地建立了三维延拓Kantorovich法的算法方程式,克服了简单试函数逼近形式的迭代不收敛的数值困难。三维Poisson方程的数值算例显示了该算法的迭代收敛性以及高精度和高效率。 Using the function approximation of tensor product,the extended Kantorovich method was successfully applied to three-dimensional problems in the paper and the non-convergence of the iteration procedure using simple function approximation was overcame.Furthermore,the iteration convergence was displayed and high accuracy and efficiency were demonstrated by numerical examples of the three-dimensional Poisson equation.
作者 林永静 袁驷
出处 《工程力学》 EI CSCD 北大核心 2012年第5期8-12,共5页 Engineering Mechanics
基金 国家杰出青年科学基金项目(59525813) 温州职业技术学院重点课题项目(WZY2010009)
关键词 延拓Kantorovich法 张量积 函数逼近形式 迭代 三维Poisson方程 extended Kantorovich method tensor product function approximation iteration three-dimensional Poisson equation
  • 相关文献

参考文献11

  • 1Kantorovich L V, Krylov V L. Approximate Methods of Higher Analysis [M]. New York: Interscience, 1958. 被引量:1
  • 2Kerr D. An extension of the Kantorovich method [J]. Quarterly of Applied Mathematics, 1968, 26: 219-229. 被引量:1
  • 3Kerr D, Alexander H. An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate [J]. Acta Mechanica, 1968, 6: 180-196. 被引量:1
  • 4Webber J P H. On the extension of the Kantorovich method [J]. The Aeronautical Journal, 1970, 74: 146-149. 被引量:1
  • 5Ascher U, Christiansen J, Russell R D. Collocation software for Boundary-Value ODEs [J]. ACM Transaction on Mathematical Software, 1981, 7(2): 209-222. 被引量:1
  • 6袁驷.介绍一个常微分方程边值问题求解通用程序——COLSYS[J].计算结构力学及其应用,1990,7(2):104-105. 被引量:70
  • 7Yuan S, Zhang Y. Further extension of the extended Kantorovich method [J]. Computational Methods in Engineering Advances and Applications, ed. A A O Tay, K Y Lam, World Scientific, Singapore, 1992, 2: 1240-1245. 被引量:1
  • 8金焱..结构分析中双向解析法的研究[D].清华大学,1997:
  • 9Yuan S, Jin Y. Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method [J]. Computers and Structures, 1998, 66(6): 861-867. 被引量:1
  • 10Yuan S, Jin Y, Williams F W. Bending analysis of mindlin plates by the extended Kantorovich method [J]. Journal of Engineering Mechanics, ASCE, 1998, 12: 1339-1345. 被引量:1

二级参考文献5

共引文献72

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部