期刊文献+

具有输入时滞的随机非线性系统的自适应神经网络控制

Adaptive Neural Control for a Class of Stochastic Nonlinear Systems with Input Delay
下载PDF
导出
摘要 考虑一类具有输入时滞的随机非线性系统的自适应神经网络控制问题。通过定义含输入积分项的设计变量,将输入时滞系统转变为非时滞系统。结合神经网络控制、积分中值定理与Decoupled Backstepping技巧,针对该类系统提出一套自适应控制策略。所提出的控制器保证闭环系统的所有信号皆4阶矩半全局一致最终有界,并且跟踪误差收敛于原点附近的小邻域内。仿真实验结果验证了所提出控制策略的有效性。 This paper considers the problem of adaptive neural control for a class of uncertain stochastic nonlinear systems with input delay.By defining the design variable with the input integral term,the input delayed system is converted to the non-delayed systems.And then,an adaptive neural control scheme is presented by combining the neural network approximation,integral mean value theorem and the decoupled backstepping technique.It is shown that the proposed controller can guarantee the 4-moment semi-globally uniformly ultimately boundedness for all the signals in the closed-loop system.Moreover,the tracking error can converge to a small neighborhood around the origin.A numerical example is given to illustrate the effectiveness of the control scheme.
作者 余昭旭
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期210-215,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金项目(60974066) 上海市自然科学基金项目(11ZR1409800) 华东理工大学优秀青年教师科研专项基金(YH0157134)
关键词 随机非线性系统 自适应控制 神经网络(NN) BACKSTEPPING 输入时滞 stochastic nonlinear systems adaptive control neural network(NN) Backstepping input delay
  • 相关文献

参考文献1

二级参考文献3

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部