期刊文献+

块控非线性系统自适应神经网络控制

Adaptive neural controller design for a class of block nonlinear systems
原文传递
导出
摘要 针对一类含有非匹配不确定性的块控型多输入多输出非线性系统,提出一种基于反演技术和RBF神经网络的控制系统设计方案.通过引入一种改进型的Lyapunov函数,避免了控制矩阵未知情况下可能出现的奇异问题.在控制系统设计过程中,充分应用鲁棒自适应控制技术,解决了多输入多输出结构不确定性所带来的设计难题,得到了系统所有状态量将全局指数收敛至原点附近一个邻域的结论.最后的仿真结果表明了设计方案的正确性. For a class of multi-input multi-output(MIMO) block nonlinear systems with mismatched uncertainties,an adaptive controller design scheme using backstepping and RBF neural networks is proposed.By introducing a modified Lyapunov function,control singularity problem brought by unknown control matrices is avoided.By using of robust adaptive control technique,many difficulties brought by MIMO uncertainties are solved.The conclusion is obtained that all states variables are bounded and will exponentially converge to a neighborhood of the origin globally.Finally,simulation results are given to show the correctness of proposed scheme.
作者 胡云安 李静
出处 《控制与决策》 EI CSCD 北大核心 2012年第6期855-860,共6页 Control and Decision
基金 国家自然科学基金项目(61004002)
关键词 不确定性 块控标准型 自适应控制 神经网络 uncertainties block structure adaptive control neural networks
  • 相关文献

参考文献13

  • 1Chen Fu-Chuang, Liu Chen-Chung. Adaptively controlling nonlinear continuous-time systems using multiplayer neural networks[J]. IEEE Trans on Automatic Control, 1994, 39(6): 1306-1310. 被引量:1
  • 2Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427. 被引量:1
  • 3Kwan C, Lewis F L. Robust backstepping control of nonlinear systems using neural networks[J]. IEEE Trans on Systems, Man, and Cybernetics, 2000, 30(6): 753-766. 被引量:1
  • 4Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica, 2000, 36(12): 1835- 1846. 被引量:1
  • 5Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE Trans on Neural Networks, 2004, 15(3): 674-692. 被引量:1
  • 6Wang D, Hung J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form[J]. IEEE Trans on Neural Networks, 2005, 16(1): 195-202. 被引量:1
  • 7Min Jianqing, Xu Zibin, Fang Yingguo. Adaptive backstepping control for a class of nonaffine nonlinear systems based on neural networks[C]. The 2nd Int Symposium on Intelligent Information Technology Application. Shanghai: IEEE Press, 2008: 716-720. 被引量:1
  • 8Wang Wei-Yen, Hong Chin-Ming, Kuo Ming-Feng. RBF neural network adaptive backstepping controllers for MIMO non~-affine nonlinear systems[C]. Proc of the 2009 IEEE Int Conf on Systems, Man, and Cybernetics. San Antonio: IEEE Press, 2009: 4946-4951. 被引量:1
  • 9Chen De-Shiou, Chang Hao-Chi, Vadim I Utkin. Block control principle for mechanical systems[J]. J of Dynamic Systems, Measurement, and Control, 2000, 122(1): 1-10. 被引量:1
  • 10Castillo-Toledo B, Dodds S J, Loukianov A G. Nonlinear sliding surface design in the presence of uncertainty[C]. Proc of the 14th IFAC. Beijing, 1999: 55-60. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部