期刊文献+

大体积充填体间矿体开采的采场结构参数优化 被引量:7

Optimization of Stope Structure Parameters for the Mining of Insulating-level Ore Body between Large Volume Backfill Body in the Upper and Lower Levels
原文传递
导出
摘要 为了开采阿舍勒铜矿上下中段大体积充填体之间的隔离中段矿体,对隔离中段的采场结构参数进行了研究。结合矿山实际情况,对采场结构参数进行了多种方案的FLAC3D数值模拟,采用神经网络和遗传算法对模拟结果进行选择、优化,确定了最佳的采场结构参数。结果表明:将神经网络和遗传算法结合起来,利用FLAC3D数值模拟的计算结果,以充填体的破坏率为目标函数,取得了理想的优化效果,实现了采场结构参数值的连续不间断优化,很好地弥补了数值模拟的缺点。 For mining the insulating-level ore body between large volume backfill body in the upper and lower levels in Ashele copper mine,the optimization of structural parameters of the stope in insulating-level was carried out.Combined with the actual situation of the mine,the numerical simulation of variant schemes about the structural parameters of stope was made by FLAC3D.After selecting and optimizing the different results of numerical simulation by neural networks and genetic algorithm,the optimal structural parameters of stope were determined.The results showed that desired optimization effects were achieved by the combination of neural networks and genetic algorithm,making use of the results of FLAC3D numerical simulation and taking the failure rate of backfill as the objective function,the continuous optimization of values of stope structure parameters was,realizedalso.This method can overcome the defect of numerical simulation.
出处 《矿业研究与开发》 CAS 北大核心 2012年第2期8-11,57,共5页 Mining Research and Development
关键词 隔离中段矿体 大体积充填体 采场结构参数 优化选择 神经网络 遗传算法 Insulating-level ore body Large volume backfill Structural parameters of stope Optimal selection Neural network Genetic algorithm
  • 相关文献

参考文献7

二级参考文献22

  • 1刘豹.模糊工程[J].决策与决策支持系统,1995(3):1-5. 被引量:2
  • 2王家巨,刘琦,骆中洲.边坡可靠性分析的非线性有限元正交设计算法[J].化工矿山技术,1994,23(2):1-4. 被引量:6
  • 3王维钢.高等岩石力学理论[M].北京:冶金工业出版社,1996.. 被引量:4
  • 4姚宝魁 刘竹华.矿山地下开采稳定性研究[M].北京:中国科学技术出版社,1996.. 被引量:1
  • 5李敏强 纪仕光 等.基于网络描述的系统模型及其管理系统.复杂巨系统理论·方法·应用[M].北京:科学技术文献出版社,1994.. 被引量:1
  • 6[2]谭云亮,石永奎,宋志安.现场矿山压力信息分析及预测模型[M].北京:煤炭工业出版社,1994:99-100. 被引量:1
  • 7[3]HAGAN M T,MENHAJ M.Training feedforward networks with the Marquardt algorithm[J].IEEE Transactions on Neural Networks,1994,5 (6):989-993. 被引量:1
  • 8RUMELHAT D E, HIN'IDN D E. Learning internal representations by back propagation error[J] .Nature, 1986,323(9):533-536. 被引量:1
  • 9MAGNITSKII N A. Some new approaches to the construction and learning of artificial neural networks[J]. Computational Mathematics and Modeling. 2001,12(4) : 293-304. 被引量:1
  • 10ALEXANDER G P, BENTTTO F A. An accelerated learning algorithm for multi-layer perceptron network[J]. IEEE, Trans On Neural Network, 1994,5(3) : 493-497. 被引量:1

共引文献253

同被引文献52

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部