期刊文献+

具源项的波动方程的非古典对称 被引量:2

Nonclassical Symmetry of the Wave Equation with Source Term
下载PDF
导出
摘要 给出了具源项的波动方程的非古典对称的完全分类和相应源项的所有可能的具体表达式.除了古典对称对应的已知源项外,获得了允许非古典对称的新源项,其中包括著名的演化方程,如线性(齐次和非齐次)波动方程,双曲Liouville方程和Klein-Gordon方程等.这些结果解答了Clarkson在2001年中提出的关于波方程非古典对称的公开问题.同时,用分类中得到的对称,通过求不变解构造了以上演化方程的一些新的精确解. The complete nonclassical symmetry classification of wave equation with a source term is given.Mathematical forms are obtained for the source terms which permit a non-classical symmetry.In addition to the known source terms obtained from classical symmetry methods,new source terms which admit nonclassical symmetry are found.Some important evolution equations,such as the linear(homogeneous and inhomogeneous) wave equations, the hyperbolic Liouville equation and the Klein-Gordon equation,are included.As a result, the open problem about the nonclassical symmetry classification mentioned by P.A.Clarkson in 2001 for the wave equation is clarified.Several new exact solutions to these evolution equations are constructed through solving their invariant solutions by using the obtained symmetries in the classification.
出处 《数学年刊(A辑)》 CSCD 北大核心 2012年第2期193-204,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11071159 No.61072147) 上海海事大学自然科学基金(No.20110008)资助的项目
关键词 非古典对称 分类 精确解 公开问题 Nonclassical symmetry Classification Exact solution Open problem
  • 相关文献

参考文献7

  • 1Clarkson P A,Mansfield E L.Open problems in symmetry analysis:in geometrical study of differential equations[M]//Leslie J A,Robart T(eds).Contemporary Mathematics Series,285.Providence,RI:A M S,2001:195-205. 被引量:1
  • 2Bluman G W,Cole J D.The general similarity solutions of the heat equations[J].J Math Mech,1969,18:1025-1042. 被引量:1
  • 3Temuer C.An algorithm for the complete symmetry classification of differential equations based on Wu's method[J].J Eng Math,2010,66:181-199. 被引量:1
  • 4Polyanin A D,Zaitsev V F.Handbook of exact solutions for ordinary differential equations [M].2nd ed.Boca Raton:Chapman & Hall/CRC Press,2003. 被引量:1
  • 5Olver P J.Applications of Lie groups to differential equations[M].2nd ed.New York: Springer-Verlag,1993. 被引量:1
  • 6Polyanin A D,Zaitsev V F.Handbook of nonlinear partial differential equations[M]. Boca Raton,FL:Chapman & Hall/CRC Press,2004. 被引量:1
  • 7Arrigo D J,Hill J M,Broadbridge P.Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source[J].IMA J Appl Math,1994,52:1-24. 被引量:1

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部