期刊文献+

Grunwald-Letnikov分数阶导数的理论分析 被引量:3

Theory Analysis of Grunwald-Letnikov Fractional Derivative
下载PDF
导出
摘要 通过整数阶导数的定义给出了Grunwald-Letnikov分数阶导数定义以及幂函数的分数阶导数的表达式.研究并指明分数阶导数也有与整数阶类似的性质,线性与莱布尼茨法则,得出结论:在一定条件下,分数阶导数与整数阶导数可交换,给出了具体实例. in this article,through the integer order derivative definition, the Grunwald-Letnikov fractional derivative definition as well as the power function's fractional derivative mathematical expressions are given,the fractional derivative with integer order of similar nature,linear and Leibniz law are studied.So the conclusions are got: under certain conditions,fractional derivative and integral derivative can be exchanged.
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2011年第3期32-34,共3页 Natural Science Journal of Harbin Normal University
基金 黑龙江省教育厅面上基金项目资助(12511155)
关键词 分数阶导数 莱布尼茨法则 Fractional derivative Leibniz law
  • 相关文献

参考文献7

  • 1Podlubny I.Fractional differential equations[M].AcademicPress,1999. 被引量:1
  • 2Samko S G,kilbas A A,Marichev D I.Fractional intergralsand derivatives:theory and applications[M].USA:Gordonand Breach Science Publishers,1993. 被引量:1
  • 3Millers K S,Ross B.An introduction to the fractional calcu-lus and fractional differential equations[M].New York:John Wiley,1993. 被引量:1
  • 4Oldham K B,Spanier J.The fractional calculus[M].Aca-demic Press,New York,1999. 被引量:1
  • 5Eric W,Physica D.Random Walks and Anomalous Diffusion[J].1996,97:291-310. 被引量:1
  • 6Saxena R K,Mathai A M,and Haubold H J.On generalizedfractional kinetic equations[J].Physica A,2004,344:657-664. 被引量:1
  • 7Magin R.L.Fractional Calculus in Bioengineering,BegellHouse Publishers,New York,2006. 被引量:1

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部