摘要
设f是图G的一个使用了k种色的正常边染色。对G的任意顶点u用Sf(μ)或S(μ)表示在f下点u关联的所有边的颜色构成的集合。如果对G的任二不同顶点u与v均有S(u)≠S(v),那么称f为G的点可区别(正常)边染色。使得G有k-点可区别正常边染色的最小的k叫做G的点可区别边色数。本文给出Pm∨Sn以及Sm∨Sn的点可区别边色数。
Let f be a k - edge - coloring of a graph G. For any vertex u in V(G) ,Sf(μ) or S(μ) denote the set of vertex u composed by edges which incident with vertex u. If Sf(u) ≠Sf(v) for any two vertices u and v of V (G) ,we say f a vertex - distinguishing proper edge - coloring of G. The minimal number k for which there exist a k -vertex- distinguishing edge coloring of G is called the vertex -distinguishing edge chromatic number of G. In this article, we get vertex - distinguishing edge chromatic numbers of Pm V Sn and Sm V Sn.
出处
《阴山学刊(自然科学版)》
2012年第1期20-22,37,共4页
Yinshan Academic Journal(Natural Science Edition)
关键词
Pm∨Sn
Sm∨Sn
边染色
点可区别边染色
点可区别边色数
PmVSn
SmVSn
edge coloring
vertex - distinguishing edge coloring
vertex - distinguishingedge chromatic number