摘要
首先给出了合成K_p[P_q]的点可区别正常边色数的一个可达的上界:当p≥3,q≥3时,χ′_s(K_p[P_q])≤pq-q+4.再利用正多边形的对称性构造染色以及组合分析的方法,确定了合成图K_p[P_q]的点可区别正常边色数:当q≥2p+4≥10,p≥q=3以及p是奇数且p≥3,q=4时,χ′_s(K_p[P_q])分别等于pq-q+4,3p和4p-1.
In this paper, we will give an upper bound for the vertex-distinguishing proper edge chromatic number of Kp[Pq] : for p ≥3 and q ≥3, we have Х's(Kp[Pq])≤ pq - q + 4. This upper bound is attainable. We then obtain vertex-distinguishing proper edge chromatic number of certain compositional graph Kp[Pq] by making use of constructing coloring in terms of the symmetry of regular polygons and the methods of combinatorial analysis: when q ≥ 2p+ 4 ≥10, p ≥q = 3 and p is odd with p 〉 3, q = 4, Х's(Kp[Pq]) is respectively equal topq-q+4, 3p and 4p- 1.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第22期243-248,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(61163037
61163054
11261046)
宁夏回族自治区百人计划资助项目
关键词
合成
正常边染色
点可区别正常边染色
点可区别正常边色数
composition
proper edge coloring
vertex-distinguishing proper edge coloring
vertex-distinguishing proper edge chromatic number