期刊文献+

高分数阶微分方程边值问题的正解

Positive solutions for boundary value problem of high fractional differential equation
下载PDF
导出
摘要 研究一类高分数阶微分方程边值问题的正解.通过一些锥上的不动点定理和等效的第二类Fredholm积分方程来研究这个方程正解的存在性和多重性,进而得到两个关于此类方程正解的定理. The existence of positive solutions of boundary value problems for fractional differential equation is studied.By using some fixed point theorems on cone and the equivalent Fredholm integral equation of second kind,the existence and multiplicity of its positive solutions are researched,and two theorems about this high fractional differential equation's positive solutions are obtained.
出处 《徐州师范大学学报(自然科学版)》 CAS 2012年第1期24-28,共5页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 河海大学科研基金资助项目(E05115-1014)
关键词 高分数阶微分方程 正解 边值问题 格林函数 不动点定理 high fractional differential equation positive solution boundary value problem Green function fixed point theorem
  • 相关文献

参考文献16

  • 1El-Sayed A M A. Nonlinear functional diferential equations of arbitrary orders[J].Nonlinear Analysis-Theory Methods and Applications,1998,(02):181.doi:10.1016/S0362-546X(97)00525-7. 被引量:1
  • 2Podlubny I. Fractional diferential equations(mathematics in science and engineering)[M].New York:Academic Press,Inc,1999. 被引量:1
  • 3Sten O E. The fourier transform of a voltammetric peak and its use in resolution enhancement[J].J Electroanal Chem Interracial Electrochem,1990,(02):371.doi:10.1016/0022-0728(90)87259-M. 被引量:1
  • 4钟成奎;范先令;陈文源.非线性泛函分析及其应用[M]兰州:兰州大学出版社,1998. 被引量:1
  • 5Diethelm K,Ford N J. Analysis of fractional diferential equations[J].Journal of Mathematical Analysis and Applications,2002,(02):229.doi:10.1006/jmaa.2000.7194. 被引量:1
  • 6El-Sayed A M A. On the fractional diferential equations[J].Applied Mathematics and Computation,1992,(2/3):205.doi:10.1016/0096-3003(92)90024-U. 被引量:1
  • 7Miller K S. Fractional diferential equations[J].J Fract Calc,1993,(01):49. 被引量:1
  • 8Miller K S,Ross B. An introduction to the fractional calculus and fractional diferential equations[M].New York:John Wiley &-Sons,1993. 被引量:1
  • 9Bai Zhaibing,Lv Haisher. Positive solutions for boundary value problem of nonlinear fractional diferential equation[J].Journal of Mathematical Analysis and Applications,2005,(02):495.doi:10.1016/j.jmaa.2005.02.052. 被引量:1
  • 10Delbosco D,Rodino L. Existence and uniqueness for a nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,1996,(02):609.doi:10.1006/jmaa.1996.0456. 被引量:1

二级参考文献6

  • 1Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation[J]. J Math Anal Appl, 1996,204(2) : 609. 被引量:1
  • 2EI-Sayed A M A. Linear differential equations of fractional orders [J]. Appl Math : Comput, 1993,55 (1) : 1. 被引量:1
  • 3EL-Raheem Z F A. Modification of the applicaion of a contraction mapping method on a class of fractional differential e- quation[J]. Appl Math ~ Comput, 2003,137 (2/3) : 371. 被引量:1
  • 4Diethelm K. The analysis of fractional differential equations:an application-oriented exposition using differential operators of Caputo type[M]. Berlin: Springer Verlag,2010. 被引量:1
  • 5BirkhoffG,RotaGC.Ordinarydifferentialequations[M].4thed.NewYork:JoanWiley,1978. 被引量:1
  • 6尤秉礼.常微分方程补充教程[M].北京:高等教育出版社,1981. 被引量:16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部