摘要
Hodgkin-Huxley方程描述了生物神经的放电活动,Fitzhugh-Nagumo方程是Hodgkin-Huxley方程的简化模型.讨论了Fitzhugh-Nagumo神经传导方程在非齐次边界条件下的初边值问题,利用Galerkin方法证明了Fitzhugh-Nagumo方程在非齐次边界条件下整体解的存在性和唯一性;运用Lyapunov稳定性理论对Fitzhugh-Nagumo方程进行了稳定性分析.
Hodgkin-Huxley equation describes the discharge activity of biological neural.Fitzhugh-Nagumo equation is a simplified model of Hodgkin-Huxley equation.The initial-boundary value problems of the Fitzhugh-Nagumo nerve conduction equation with inhomogeneous boundary conditions were discussed.The existence and uniqueness of the global solutions for the Fitzhugh-Nagumo equation with inhomogeneous boundary conditions was proved by means of the Galerkin method.The stability of Fitzhugh-Nagumo equation was analyzed by means of the Lyapunov stability theory.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2012年第1期43-46,共4页
Journal of North University of China(Natural Science Edition)
基金
太原理工大学校科技发展基金资助项目(博士启动费)