期刊文献+

具有周期边界的Fitzhugh-Nagumo方程的初边值问题 被引量:1

Initial Value Problem for Fitzhugh-Nagumo Equations with Periodic Boundary
下载PDF
导出
摘要 Hodgkin-Huxley方程是描述神经纤维膜电流、膜电压关系的微分方程,Fitzhugh-Nagumo方程是Hodgkin-Huxley方程的一种简化.讨论了Fitzhugh-Nagumo方程具有周期边界的初边值问题,利用Galerkin方法及常微分方程理论,证明了具有周期边界的Fitzhugh-Nagumo方程存在局部解,通过对局部解作一致先验估计证明了整体解的存在性;利用Gronwall不等式证明了Fitzhugh-Nagumo方程整体解的唯一性. Hodgkin-Huxley equations are the differential equations that describing the relationship between membrane currents and voltages in nerve fibers.Fitzhugh-Nagumo equations are the simplification of Hodgkin-Huxley equations.The initial value problem of Fitzhugh-Nagumo equations with periodic boundary was discussed.The existence of local solutions to the Fitzhugh-Nagumo equations with periodic boundary was proved by means of the Galerkin method and the theory of ordinary differential equation.And the existence of global solutions was also proved through prior estimates of local solutions.Its uniqueness of the global solutions was proved by using Gronwall inequality.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2012年第3期228-231,共4页 Journal of North University of China(Natural Science Edition)
基金 太原理工大学校科技发展基金资助项目(博士启动费)
关键词 FITZHUGH-NAGUMO方程 GALERKIN方法 GRONWALL不等式 Fitzhugh-Nagumo equations Galerkin menthod Gronwall inequality
  • 相关文献

参考文献3

二级参考文献11

共引文献6

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部